← Back

Protein

Topic spotlight
TopicWorld Wide

protein

Discover seminars, jobs, and research tagged with protein across World Wide.
100 curated items60 Seminars40 ePosters
Updated 3 months ago
100 items · protein
100 results
SeminarNeuroscience

How the presynapse forms and functions”

Volker Haucke
Department of Molecular Pharmacology & Cell Biology, Leibniz Institute, Berlin, Germany
Aug 27, 2025

Nervous system function relies on the polarized architecture of neurons, established by directional transport of pre- and postsynaptic cargoes. While delivery of postsynaptic components depends on the secretory pathway, the identity of the membrane compartment(s) that supply presynaptic active zone (AZ) and synaptic vesicle (SV) proteins is largely unknown. I will discuss our recent advances in our understanding of how key components of the presynaptic machinery for neurotransmitter release are transported and assembled focussing on our studies in genome-engineered human induced pluripotent stem cell-derived neurons. Specifically, I will focus on the composition and cell biological identity of the axonal transport vesicles that shuttle key components of neurotransmission to nascent synapses and on machinery for axonal transport and its control by signaling lipids. Our studies identify a crucial mechanism mediating the delivery of SV and active zone proteins to developing synapses and reveal connections to neurological disorders. In the second part of my talk, I will discuss how exocytosis and endocytosis are coupled to maintain presynaptic membrane homeostasis. I will present unpublished data regarding the role of membrane tension in the coupling of exocytosis and endocytosis at synapses. We have identified an endocytic BAR domain protein that is capable of sensing alterations in membrane tension caused by the exocytotic fusion of SVs to initiate compensatory endocytosis to restore plasma membrane area. Interference with this mechanism results in defects in the coupling of presynaptic exocytosis and SV recycling at human synapses.

SeminarNeuroscience

Cause & Consequences of neuronal Tau protein ‘activation’

Susanne Wegmann
German Center for Neurodegenerative Diseases (DZNE), Berlin
Jul 16, 2025
SeminarNeuroscience

Expanding mechanisms and therapeutic targets for neurodegenerative disease

Aaron D. Gitler
Department of Genetics, Stanford University
Jun 4, 2025

A hallmark pathological feature of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is the depletion of RNA-binding protein TDP-43 from the nucleus of neurons in the brain and spinal cord. A major function of TDP-43 is as a repressor of cryptic exon inclusion during RNA splicing. By re-analyzing RNA-sequencing datasets from human FTD/ALS brains, we discovered dozens of novel cryptic splicing events in important neuronal genes. Single nucleotide polymorphisms in UNC13A are among the strongest hits associated with FTD and ALS in human genome-wide association studies, but how those variants increase risk for disease is unknown. We discovered that TDP-43 represses a cryptic exon-splicing event in UNC13A. Loss of TDP-43 from the nucleus in human brain, neuronal cell lines and motor neurons derived from induced pluripotent stem cells resulted in the inclusion of a cryptic exon in UNC13A mRNA and reduced UNC13A protein expression. The top variants associated with FTD or ALS risk in humans are located in the intron harboring the cryptic exon, and we show that they increase UNC13A cryptic exon splicing in the face of TDP-43 dysfunction. Together, our data provide a direct functional link between one of the strongest genetic risk factors for FTD and ALS (UNC13A genetic variants), and loss of TDP-43 function. Recent analyses have revealed even further changes in TDP-43 target genes, including widespread changes in alternative polyadenylation, impacting expression of disease-relevant genes (e.g., ELP1, NEFL, and TMEM106B) and providing evidence that alternative polyadenylation is a new facet of TDP-43 pathology.

SeminarNeuroscience

The synaptic functions of Alpha Synuclein and Lrrk2

Subhojit Roy, MD, PhD
University of Wisconsin-Madison
Feb 17, 2025

Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, followed by functional assays, will be presented.

SeminarNeuroscience

Light-gated membrane channels: Discovery and creation of diversity, principles from protein structure, and cell-function access to biology

Karl Deisseroth
Stanford University
Jul 3, 2024
SeminarNeuroscienceRecording

Cell-type-specific plasticity shapes neocortical dynamics for motor learning

Shouvik Majumder
Max Planck Florida Institute of Neuroscience, USA
Apr 17, 2024

How do cortical circuits acquire new dynamics that drive learned movements? This webinar will focus on mouse premotor cortex in relation to learned lick-timing and explore high-density electrophysiology using our silicon neural probes alongside region and cell-type-specific acute genetic manipulations of proteins required for synaptic plasticity.

SeminarNeuroscience

How are the epileptogenesis clocks ticking?

Cristina Reschke
RCSI
Apr 9, 2024

The epileptogenesis process is associated with large-scale changes in gene expression, which contribute to the remodelling of brain networks permanently altering excitability. About 80% of the protein coding genes are under the influence of the circadian rhythms. These are 24-hour endogenous rhythms that determine a large number of daily changes in physiology and behavior in our bodies. In the brain, the master clock regulates a large number of pathways that are important during epileptogenesis and established-epilepsy, such as neurotransmission, synaptic homeostasis, inflammation, blood-brain barrier among others. In-depth mapping of the molecular basis of circadian timing in the brain is key for a complete understanding of the cellular and molecular events connecting genes to phenotypes.

SeminarNeuroscience

Astrocyte reprogramming / activation and brain homeostasis

Thomaidou Dimitra
Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
Dec 12, 2023

Astrocytes are multifunctional glial cells, implicated in neurogenesis and synaptogenesis, supporting and fine-tuning neuronal activity and maintaining brain homeostasis by controlling blood-brain barrier permeability. During the last years a number of studies have shown that astrocytes can also be converted into neurons if they force-express neurogenic transcription factors or miRNAs. Direct astrocytic reprogramming to induced-neurons (iNs) is a powerful approach for manipulating cell fate, as it takes advantage of the intrinsic neural stem cell (NSC) potential of brain resident reactive astrocytes. To this end, astrocytic cell fate conversion to iNs has been well-established in vitro and in vivo using combinations of transcription factors (TFs) or chemical cocktails. Challenging the expression of lineage-specific TFs is accompanied by changes in the expression of miRNAs, that post-transcriptionally modulate high numbers of neurogenesis-promoting factors and have therefore been introduced, supplementary or alternatively to TFs, to instruct direct neuronal reprogramming. The neurogenic miRNA miR-124 has been employed in direct reprogramming protocols supplementary to neurogenic TFs and other miRNAs to enhance direct neurogenic conversion by suppressing multiple non-neuronal targets. In our group we aimed to investigate whether miR-124 is sufficient to drive direct reprogramming of astrocytes to induced-neurons (iNs) on its own both in vitro and in vivo and elucidate its independent mechanism of reprogramming action. Our in vitro data indicate that miR-124 is a potent driver of the reprogramming switch of astrocytes towards an immature neuronal fate. Elucidation of the molecular pathways being triggered by miR-124 by RNA-seq analysis revealed that miR-124 is sufficient to instruct reprogramming of cortical astrocytes to immature induced-neurons (iNs) in vitro by down-regulating genes with important regulatory roles in astrocytic function. Among these, the RNA binding protein Zfp36l1, implicated in ARE-mediated mRNA decay, was found to be a direct target of miR-124, that be its turn targets neuronal-specific proteins participating in cortical development, which get de-repressed in miR-124-iNs. Furthermore, miR-124 is potent to guide direct neuronal reprogramming of reactive astrocytes to iNs of cortical identity following cortical trauma, a novel finding confirming its robust reprogramming action within the cortical microenvironment under neuroinflammatory conditions. In parallel to their reprogramming properties, astrocytes also participate in the maintenance of blood-brain barrier integrity, which ensures the physiological functioning of the central nervous system and gets affected contributing to the pathology of several neurodegenerative diseases. To study in real time the dynamic physical interactions of astrocytes with brain vasculature under homeostatic and pathological conditions, we performed 2-photon brain intravital imaging in a mouse model of systemic neuroinflammation, known to trigger astrogliosis and microgliosis and to evoke changes in astrocytic contact with brain vasculature. Our in vivo findings indicate that following neuroinflammation the endfeet of activated perivascular astrocytes lose their close proximity and physiological cross-talk with vasculature, however this event is at compensated by the cross-talk of astrocytes with activated microglia, safeguarding blood vessel coverage and maintenance of blood-brain integrity.

SeminarNeuroscience

Connectome-based models of neurodegenerative disease

Jacob Vogel
Lund University
Dec 4, 2023

Neurodegenerative diseases involve accumulation of aberrant proteins in the brain, leading to brain damage and progressive cognitive and behavioral dysfunction. Many gaps exist in our understanding of how these diseases initiate and how they progress through the brain. However, evidence has accumulated supporting the hypothesis that aberrant proteins can be transported using the brain’s intrinsic network architecture — in other words, using the brain’s natural communication pathways. This theory forms the basis of connectome-based computational models, which combine real human data and theoretical disease mechanisms to simulate the progression of neurodegenerative diseases through the brain. In this talk, I will first review work leading to the development of connectome-based models, and work from my lab and others that have used these models to test hypothetical modes of disease progression. Second, I will discuss the future and potential of connectome-based models to achieve clinically useful individual-level predictions, as well as to generate novel biological insights into disease progression. Along the way, I will highlight recent work by my lab and others that is already moving the needle toward these lofty goals.

SeminarNeuroscience

NOTE: DUE TO A CYBER ATTACK OUR UNIVERSITY WEB SYSTEM IS SHUT DOWN - TALK WILL BE RESCHEDULED

Susanne Schoch McGovern
Universität Bonn
Jun 6, 2023

The size and structure of the dendritic arbor play important roles in determining how synaptic inputs of neurons are converted to action potential output and how neurons are integrated in the surrounding neuronal network. Accordingly, neurons with aberrant morphology have been associated with neurological disorders. Dysmorphic, enlarged neurons are, for example, a hallmark of focal epileptogenic lesions like focal cortical dysplasia (FCDIIb) and gangliogliomas (GG). However, the regulatory mechanisms governing the development of dendrites are insufficiently understood. The evolutionary conserved Ste20/Hippo kinase pathway has been proposed to play an important role in regulating the formation and maintenance of dendritic architecture. A key element of this pathway, Ste20-like kinase (SLK), regulates cytoskeletal dynamics in non-neuronal cells and is strongly expressed throughout neuronal development. Nevertheless, its function in neurons is unknown. We found that during development of mouse cortical neurons, SLK has a surprisingly specific role for proper elaboration of higher, ≥ 3rd, order dendrites both in cultured neurons and living mice. Moreover, SLK is required to maintain excitation-inhibition balance. Specifically, SLK knockdown causes a selective loss of inhibitory synapses and functional inhibition after postnatal day 15, while excitatory neurotransmission is unaffected. This mechanism may be relevant for human disease, as dysmorphic neurons within human cortical malformations exhibit significant loss of SLK expression. To uncover the signaling cascades underlying the action of SLK, we combined phosphoproteomics, protein interaction screens and single cell RNA seq. Overall, our data identifies SLK as a key regulator of both dendritic complexity during development and of inhibitory synapse maintenance.

SeminarNeuroscience

Epigenetic rewiring in Schinzel-Giedion syndrome

Alessandro Sessa, PhD
San Raffaele Scientific Institute, Milan (Italy), Stem Cell & Neurogenesis Unit
May 2, 2023

During life, a variety of specialized cells arise to grant the right and timely corrected functions of tissues and organs. Regulation of chromatin in defining specialized genomic regions (e.g. enhancers) plays a key role in developmental transitions from progenitors into cell lineages. These enhancers, properly topologically positioned in 3D space, ultimately guide the transcriptional programs. It is becoming clear that several pathologies converge in differential enhancer usage with respect to physiological situations. However, why some regulatory regions are physiologically preferred, while some others can emerge in certain conditions, including other fate decisions or diseases, remains obscure. Schinzel-Giedion syndrome (SGS) is a rare disease with symptoms such as severe developmental delay, congenital malformations, progressive brain atrophy, intractable seizures, and infantile death. SGS is caused by mutations in the SETBP1 gene that results in its accumulation further leading to the downstream accumulation of SET. The oncoprotein SET has been found as part of the histone chaperone complex INHAT that blocks the activity of histone acetyltransferases suggesting that SGS may (i) represent a natural model of alternative chromatin regulation and (ii) offer chances to study downstream (mal)adaptive mechanisms. I will present our work on the characterization of SGS in appropriate experimental models including iPSC-derived cultures and mouse.

SeminarNeuroscience

Neuron-glial interactions in health and disease: from cognition to cancer

Michelle Monje
Stanford Medicine
Mar 13, 2023

In the central nervous system, neuronal activity is a critical regulator of development and plasticity. Activity-dependent proliferation of healthy glial progenitors, oligodendrocyte precursor cells (OPCs), and the consequent generation of new oligodendrocytes contributes to adaptive myelination. This plasticity of myelin tunes neural circuit function and contributes to healthy cognition. The robust mitogenic effect of neuronal activity on normal oligodendroglial precursor cells, a putative cellular origin for many forms of glioma, suggests that dysregulated or “hijacked” mechanisms of myelin plasticity might similarly promote malignant cell proliferation in this devastating group of brain cancers. Indeed, neuronal activity promotes progression of both high-grade and low-grade glioma subtypes in preclinical models. Crucial mechanisms mediating activity-regulated glioma growth include paracrine secretion of BDNF and the synaptic protein neuroligin-3 (NLGN3). NLGN3 induces multiple oncogenic signaling pathways in the cancer cell, and also promotes glutamatergic synapse formation between neurons and glioma cells. Glioma cells integrate into neural circuits synaptically through neuron-to-glioma synapses, and electrically through potassium-evoked currents that are amplified through gap-junctional coupling between tumor cells This synaptic and electrical integration of glioma into neural circuits is central to tumor progression in preclinical models. Thus, neuron-glial interactions not only modulate neural circuit structure and function in the healthy brain, but paracrine and synaptic neuron-glioma interactions also play important roles in the pathogenesis of glial cancers. The mechanistic parallels between normal and malignant neuron-glial interactions underscores the extent to which mechanisms of neurodevelopment and plasticity are subverted by malignant gliomas, and the importance of understanding the neuroscience of cancer.

SeminarNeuroscienceRecording

Cholesterol and matrisome pathways dysregulated in Alzheimer’s disease brain astrocytes and microglia

Julia TCW
Boston University
Dec 15, 2022

The impact of apolipoprotein E ε4 (APOE4), the strongest genetic risk factor for Alzheimer’s disease (AD), on human brain cellular function remains unclear. Here, we investigated the effects of APOE4 on brain cell types derived from population and isogenic human induced pluripotent stem cells, post-mortem brain, and APOE targeted replacement mice. Population and isogenic models demonstrate that APOE4 local haplotype, rather than a single risk allele, contributes to risk. Global transcriptomic analyses reveal human-specific, APOE4-driven lipid metabolic dysregulation in astrocytes and microglia. APOE4 enhances de novo cholesterol synthesis despite elevated intracellular cholesterol due to lysosomal cholesterol sequestration in astrocytes. Further, matrisome dysregulation is associated with upregulated chemotaxis, glial activation, and lipid biosynthesis in astrocytes co-cultured with neurons, which recapitulates altered astrocyte matrisome signaling in human brain. Thus, APOE4 initiates glia-specific cell and non-cell autonomous dysregulation that may contribute to increased AD risk." https://doi.org/10.1016/j.cell.2022.05.017

SeminarNeuroscience

Minimal genetically encoded tags for fluorescent protein labeling in living neurons

Aleksandra Arsic
Werner Reichardt Centre for Integrative Neuroscience (CIN), Tübingen University
Oct 19, 2022
SeminarNeuroscienceRecording

Linking GWAS to pharmacological treatments for psychiatric disorders

Aurina Arnatkeviciute
Monash University
Aug 18, 2022

Genome-wide association studies (GWAS) have identified multiple disease-associated genetic variations across different psychiatric disorders raising the question of how these genetic variants relate to the corresponding pharmacological treatments. In this talk, I will outline our work investigating whether functional information from a range of open bioinformatics datasets such as protein interaction network (PPI), brain eQTL, and gene expression pattern across the brain can uncover the relationship between GWAS-identified genetic variation and the genes targeted by current drugs for psychiatric disorders. Focusing on four psychiatric disorders---ADHD, bipolar disorder, schizophrenia, and major depressive disorder---we assess relationships between the gene targets of drug treatments and GWAS hits and show that while incorporating information derived from functional bioinformatics data, such as the PPI network and spatial gene expression, can reveal links for bipolar disorder, the overall correspondence between treatment targets and GWAS-implicated genes in psychiatric disorders rarely exceeds null expectations. This relatively low degree of correspondence across modalities suggests that the genetic mechanisms driving the risk for psychiatric disorders may be distinct from the pathophysiological mechanisms used for targeting symptom manifestations through pharmacological treatments and that novel approaches for understanding and treating psychiatric disorders may be required.

SeminarPhysics of LifeRecording

Magnetic Handshake Materials

Chrisy Xiyu Du
Harvard University
Jul 31, 2022

Biological materials gain complexity from the programmable nature of their components. To manufacture materials with comparable complexity synthetically, we need to create building blocks with low crosstalk so that they only bind to their desired partners. Canonically, these building blocks are made using DNA strands or proteins to achieve specificity. Here we propose a new materials platform, termed Magnetic Handshake Materials, in which we program interactions through designing magnetic dipole patterns. This is a completely synthetic platform, enabled by magnetic printing technology, which is easier to both model theoretically and control experimentally. In this seminar, I will give an overview of the development of the Magnetic Handshake Materials platform, ranging from interaction, assembly to function design.

SeminarPhysics of LifeRecording

Active mechanics of sea star oocytes

Peter Foster
Brandeis University
Jul 17, 2022

The cytoskeleton has the remarkable ability to self-organize into active materials which underlie diverse cellular processes ranging from motility to cell division. Actomyosin is a canonical example of an active material, which generates cellularscale contractility in part through the forces exerted by myosin motors on actin filaments. While the molecular players underlying actomyosin contractility have been well characterized, how cellular-scale deformation in disordered actomyosin networks emerges from filament-scale interactions is not well understood. In this talk, I’ll present work done in collaboration with Sebastian Fürthauer and Nikta Fakhri addressing this question in vivo using the meiotic surface contraction wave seen in oocytes of the bat star Patiria miniata as a model system. By perturbing actin polymerization, we find that the cellular deformation rate is a nonmonotonic function of cortical actin density peaked near the wild type density. To understand this, we develop an active fluid model coarse-grained from filament-scale interactions and find quantitative agreement with the measured data. The model makes further predictions, including the surprising prediction that deformation rate decreases with increasing motor concentration. We test these predictions through protein overexpression and find quantitative agreement. Taken together, this work is an important step for bridging the molecular and cellular length scales for cytoskeletal networks in vivo.

SeminarNeuroscience

The glymphatic system in motor neurone disease

David Wright
Monash University
Jul 5, 2022

Neurodegenerative diseases are chronic and inexorable conditions characterised by the presence of insoluble aggregates of abnormally ubiquinated and phosphorylated proteins. Recent evidence also suggests that protein misfolding can propagate throughout the body in a prion-like fashion via the interstitial or cerebrospinal fluids (CSF). As protein aggregation occurs well before the onset of brain damage and symptoms, new biomarkers sensitive to early pathology, together with therapeutic strategies that include eliminating seed proteins and blocking cell-to-cell spread, are of vital importance. The glymphatic system, which facilitates the continuous exchange of CSF and interstitial fluid to clear the brain of waste, presents as a potential biomarker of disease severity, therapeutic target, and drug delivery system. In this webinar, Associate Professor David Wright from the Department of Neuroscience, Monash University, will outline recent advances in using MRI to investigate the glymphatic system. He will also present some of his lab’s recent work investigating glymphatic clearance in preclinical models of motor neurone disease. Associate Professor David Wright is an NHMRC Emerging Leadership Fellow and the Director of Preclinical Imaging in the Department of Neuroscience, Monash University and the Alfred Research Alliance, Alfred Health. His research encompasses the development, application and analysis of advanced magnetic resonance imaging techniques for the study of disease, with a particular emphasis on neurodegenerative disorders. Although less than three years post PhD, he has published over 60 peer-reviewed journal articles in leading neuroscience journals such as Nature Medicine, Brain, and Cerebral Cortex.

SeminarNeuroscience

Molecular Logic of Synapse Organization and Plasticity

Tabrez Siddiqui
University of Manitoba
May 30, 2022

Connections between nerve cells called synapses are the fundamental units of communication and information processing in the brain. The accurate wiring of neurons through synapses into neural networks or circuits is essential for brain organization. Neuronal networks are sculpted and refined throughout life by constant adjustment of the strength of synaptic communication by neuronal activity, a process known as synaptic plasticity. Deficits in the development or plasticity of synapses underlie various neuropsychiatric disorders, including autism, schizophrenia and intellectual disability. The Siddiqui lab research program comprises three major themes. One, to assess how biochemical switches control the activity of synapse organizing proteins, how these switches act through their binding partners and how these processes are regulated to correct impaired synaptic function in disease. Two, to investigate how synapse organizers regulate the specificity of neuronal circuit development and how defined circuits contribute to cognition and behaviour. Three, to address how synapses are formed in the developing brain and maintained in the mature brain and how microcircuits formed by synapses are refined to fine-tune information processing in the brain. Together, these studies have generated fundamental new knowledge about neuronal circuit development and plasticity and enabled us to identify targets for therapeutic intervention.

SeminarNeuroscience

Systemic regulation and measurement of mammalian aging

Tony Wyss-Coray
Stanford University
May 30, 2022

Brain aging leads to cognitive decline and is the main risk factor for sporadic forms of neurodegenerative diseases including Alzheimer’s disease. While brain cell- and tissue-intrinsic factors are likely key determinants of the aging process recent studies document a remarkable susceptibility of the brain to circulatory factors. Thus, blood borne factors from young mice or humans are sufficient to slow aspects of brain aging and improve cognitive function in old mice and, vice versa, factors from old mice are detrimental for young mice and impair cognition. We found evidence that the cerebrovasculature is an important target of circulatory factors and that brain endothelial cells show prominent age-related transcriptional changes in response to plasma. Furthermore, plasma proteins are taken up broadly into the young brain through receptor mediated transport which declines with aging. At the same time, brain derived proteins are detectable in plasma allowing us to measure physiological changes linked to brain aging in plasma. We are exploring the relevance of these findings for neurodegeneration and potential applications towards therapies.

SeminarNeuroscience

Malignant synaptic plasticity in pediatric high-grade gliomas

Kathryn Taylor
Stanford
May 24, 2022

Pediatric high-grade gliomas (pHGG) are a devastating group of diseases that urgently require novel therapeutic options. We have previously demonstrated that pHGGs directly synapse onto neurons and the subsequent tumor cell depolarization, mediated by calcium-permeable AMPA channels, promotes their proliferation. The regulatory mechanisms governing these postsynaptic connections are unknown. Here, we investigated the role of BDNF-TrkB signaling in modulating the plasticity of the malignant synapse. BDNF ligand activation of its canonical receptor, TrkB (which is encoded for by the gene NTRK2), has been shown to be one important modulator of synaptic regulation in the normal setting. Electrophysiological recordings of glioma cell membrane properties, in response to acute neurotransmitter stimulation, demonstrate in an inward current resembling AMPA receptor (AMPAR) mediated excitatory neurotransmission. Extracellular BDNF increases the amplitude of this glutamate-induced tumor cell depolarization and this effect is abrogated in NTRK2 knockout glioma cells. Upon examining tumor cell excitability using in situ calcium imaging, we found that BDNF increases the intensity of glutamate-evoked calcium transients in GCaMP6s expressing glioma cells. Western blot analysis indicates the tumors AMPAR properties are altered downstream of BDNF induced TrkB activation in glioma. Cell membrane protein capture (via biotinylation) and live imaging of pH sensitive GFP-tagged AMPAR subunits demonstrate an increase of calcium permeable channels at the tumors postsynaptic membrane in response to BDNF. We find that BDNF-TrkB signaling promotes neuron-to-glioma synaptogenesis as measured by high-resolution confocal and electron microscopy in culture and tumor xenografts. Our analysis of published pHGG transcriptomic datasets, together with brain slice conditioned medium experiments in culture, indicates the tumor microenvironment as the chief source of BDNF ligand. Disruption of the BDNF-TrkB pathway in patient-derived orthotopic glioma xenograft models, both genetically and pharmacologically, results in an increased overall survival and reduced tumor proliferation rate. These findings suggest that gliomas leverage normal mechanisms of plasticity to modulate the excitatory channels involved in synaptic neurotransmission and they reveal the potential to target the regulatory components of glioma circuit dynamics as a therapeutic strategy for these lethal cancers.

SeminarNeuroscience

How do protein-RNA condensates form and contribute to disease?

Jernej Ule
UK Dementia Research Institute
May 5, 2022

In recent years, it has become clear that intrinsically disordered regions (IDRs) of RBPs, and the structure of RNAs, often contribute to the condensation of RNPs. To understand the transcriptomic features of such RNP condensates, we’ve used an improved individual nucleotide resolution CLIP protocol (iiCLIP), which produces highly sensitive and specific data, and thus enables quantitative comparisons of interactions across conditions (Lee et al., 2021). This showed how the IDR-dependent condensation properties of TDP-43 specify its RNA binding and regulatory repertoire (Hallegger et al., 2021). Moreover, we developed software for discovery and visualisation of RNA binding motifs that uncovered common binding patterns of RBPs on long multivalent RNA regions that are composed of dispersed motif clusters (Kuret et al, 2021). Finally, we used hybrid iCLIP (hiCLIP) to characterise the RNA structures mediating the assembly of Staufen RNPs across mammalian brain development, which demonstrated the roles of long-range RNA duplexes in the compaction of long 3’UTRs. I will present how the combined analysis of the characteristics of IDRs in RBPs, multivalent RNA regions and RNA structures is required to understand the formation and functions of RNP condensates, and how they change in diseases.

SeminarNeuroscience

MicroRNAs as targets in the epilepsies: hits, misses and complexes

David Henshall
The Royal College of Surgeons in Ireland
May 3, 2022

MicroRNAs are small noncoding RNAs that provide a critical layer of gene expression control. Individual microRNAs variably exert effects across networks of genes via sequence-specific binding to mRNAs, fine-tuning protein levels. This helps coordinate the timing and specification of cell fate transitions during brain development and maintains neural circuit function and plasticity by activity-dependent (re)shaping of synapses and the levels of neurotransmitter components. MicroRNA levels have been found to be altered in tissue from the epileptogenic zone resected from adults with drug-resistant focal epilepsy and this has driven efforts to explore their therapeutic potential, in particular using antisense oligonucleotide (ASOs) inhibitors termed antimirs. Here, we review the molecular mechanisms by which microRNAs control brain excitability and the latest progress towards a microRNA-based treatment for temporal lobe epilepsy. We also look at whether microRNA-based approaches could be used to treat genetic epilepsies, correcting individual genes or dysregulated pathways. Finally, we look at how cells have evolved to maximise the efficiency of the microRNA system via RNA editing, where single base changes is capable of altering the repertoire of genes under the control of a single microRNA. The findings improve our understanding of the molecular landscape of the epileptic brain and may lead to new therapies.

SeminarNeuroscience

The Synaptome Architecture of the Brain: Lifespan, disease, evolution and behavior

Seth Grant
Professor of Molecular Neuroscience, Centre for Clinical Brain Sciences, University of Edinburgh, UK
May 1, 2022

The overall aim of my research is to understand how the organisation of the synapse, with particular reference to the postsynaptic proteome (PSP) of excitatory synapses in the brain, informs the fundamental mechanisms of learning, memory and behaviour and how these mechanisms go awry in neurological dysfunction. The PSP indeed bears a remarkable burden of disease, with components being disrupted in disorders (synaptopathies) including schizophrenia, depression, autism and intellectual disability. Our work has been fundamental in revealing and then characterising the unprecedented complexity (>1000 highly conserved proteins) of the PSP in terms of the subsynaptic architecture of postsynaptic proteins such as PSD95 and how these proteins assemble into complexes and supercomplexes in different neurons and regions of the brain. Characterising the PSPs in multiple species, including human and mouse, has revealed differences in key sets of functionally important proteins, correlates with brain imaging and connectome data, and a differential distribution of disease-relevant proteins and pathways. Such studies have also provided important insight into synapse evolution, establishing that vertebrate behavioural complexity is a product of the evolutionary expansion in synapse proteomes that occurred ~500 million years ago. My lab has identified many mutations causing cognitive impairments in mice before they were found to cause human disorders. Our proteomic studies revealed that >130 brain diseases are caused by mutations affecting postsynaptic proteins. We uncovered mechanisms that explain the polygenic basis and age of onset of schizophrenia, with postsynaptic proteins, including PSD95 supercomplexes, carrying much of the polygenic burden. We discovered the “Genetic Lifespan Calendar”, a genomic programme controlling when genes are regulated. We showed that this could explain how schizophrenia susceptibility genes are timed to exert their effects in young adults. The Genes to Cognition programme is the largest genetic study so far undertaken into the synaptic molecular mechanisms underlying behaviour and physiology. We made important conceptual advances that inform how the repertoire of both innate and learned behaviours is built from unique combinations of postsynaptic proteins that either amplify or attenuate the behavioural response. This constitutes a key advance in understanding how the brain decodes information inherent in patterns of nerve impulses, and provides insight into why the PSP has evolved to be so complex, and consequently why the phenotypes of synaptopathies are so diverse. Our most recent work has opened a new phase, and scale, in understanding synapses with the first synaptome maps of the brain. We have developed next-generation methods (SYNMAP) that enable single-synapse resolution molecular mapping across the whole mouse brain and extensive regions of the human brain, revealing the molecular and morphological features of a billion synapses. This has already uncovered unprecedented spatiotemporal synapse diversity organised into an architecture that correlates with the structural and functional connectomes, and shown how mutations that cause cognitive disorders reorganise these synaptome maps; for example, by detecting vulnerable synapse subtypes and synapse loss in Alzheimer’s disease. This innovative synaptome mapping technology has huge potential to help characterise how the brain changes during normal development, including in specific cell types, and with degeneration, facilitating novel pathways to diagnosis and therapy.

SeminarNeuroscience

Multi-modal biomarkers improve prediction of memory function in cognitively unimpaired older adults

Alexandra N. Trelle
Stanford
Mar 21, 2022

Identifying biomarkers that predict current and future cognition may improve estimates of Alzheimer’s disease risk among cognitively unimpaired older adults (CU). In vivo measures of amyloid and tau protein burden and task-based functional MRI measures of core memory mechanisms, such as the strength of cortical reinstatement during remembering, have each been linked to individual differences in memory in CU. This study assesses whether combining CSF biomarkers with fMRI indices of cortical reinstatement improves estimation of memory function in CU, assayed using three unique tests of hippocampal-dependent memory. Participants were 158 CU (90F, aged 60-88 years, CDR=0) enrolled in the Stanford Aging and Memory Study (SAMS). Cortical reinstatement was quantified using multivoxel pattern analysis of fMRI data collected during completion of a paired associate cued recall task. Memory was assayed by associative cued recall, a delayed recall composite, and a mnemonic discrimination task that involved discrimination between studied ‘target’ objects, novel ‘foil’ objects, and perceptually similar ‘lure’ objects. CSF Aβ42, Aβ40, and p-tau181 were measured with the automated Lumipulse G system (N=115). Regression analyses examined cross-sectional relationships between memory performance in each task and a) the strength of cortical reinstatement in the Default Network (comprised of posterior medial, medial frontal, and lateral parietal regions) during associative cued recall and b) CSF Aβ42/Aβ40 and p-tau181, controlling for age, sex, and education. For mnemonic discrimination, linear mixed effects models were used to examine the relationship between discrimination (d’) and each predictor as a function of target-lure similarity. Stronger cortical reinstatement was associated with better performance across all three memory assays. Age and higher CSF p-tau181 were each associated with poorer associative memory and a diminished improvement in mnemonic discrimination as target-lure similarity decreased. When combined in a single model, CSF p-tau181 and Default Network reinstatement strength, but not age, explained unique variance in associative memory and mnemonic discrimination performance, outperforming the single-modality models. Combining fMRI measures of core memory functions with protein biomarkers of Alzheimer’s disease significantly improved prediction of individual differences in memory performance in CU. Leveraging multimodal biomarkers may enhance future prediction of risk for cognitive decline.

SeminarNeuroscience

Effects of pathological Tau on hippocampal neuronal activity and spatial memory in ageing mice

Tim Viney
University of Oxford
Feb 10, 2022

The gradual accumulation of hyperphosphorylated forms of the Tau protein (pTau) in the human brain correlate with cognitive dysfunction and neurodegeneration. I will present our recent findings on the consequences of human pTau aggregation in the hippocampal formation of a mouse tauopathy model. We show that pTau preferentially accumulates in deep-layer pyramidal neurons, leading to their neurodegeneration. In aged but not younger mice, pTau spreads to oligodendrocytes. During ‘goal-directed’ navigation, we detect fewer high-firing pyramidal cells, but coupling to network oscillations is maintained in the remaining cells. The firing patterns of individually recorded and labelled pyramidal and GABAergic neurons are similar in transgenic and non-transgenic mice, as are network oscillations, suggesting intact neuronal coordination. This is consistent with a lack of pTau in subcortical brain areas that provide rhythmic input to the cortex. Spatial memory tests reveal a reduction in short-term familiarity of spatial cues but unimpaired spatial working and reference memory. These results suggest that preserved subcortical network mechanisms compensate for the widespread pTau aggregation in the hippocampal formation. I will also briefly discuss ideas on the subcortical origins of spatial memory and the concept of the cortex as a monitoring device.

SeminarNeuroscience

JAK/STAT regulation of the transcriptomic response during epileptogenesis

Amy Brooks-Kayal
Children's Hospital Colorado / UC Davis
Dec 14, 2021

Temporal lobe epilepsy (TLE) is a progressive disorder mediated by pathological changes in molecular cascades and neural circuit remodeling in the hippocampus resulting in increased susceptibility to spontaneous seizures and cognitive dysfunction. Targeting these cascades could prevent or reverse symptom progression and has the potential to provide viable disease-modifying treatments that could reduce the portion of TLE patients (>30%) not responsive to current medical therapies. Changes in GABA(A) receptor subunit expression have been implicated in the pathogenesis of TLE, and the Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway has been shown to be a key regulator of these changes. The JAK/STAT pathway is known to be involved in inflammation and immunity, and to be critical for neuronal functions such as synaptic plasticity and synaptogenesis. Our laboratories have shown that a STAT3 inhibitor, WP1066, could greatly reduce the number of spontaneous recurrent seizures (SRS) in an animal model of pilocarpine-induced status epilepticus (SE). This suggests promise for JAK/STAT inhibitors as disease-modifying therapies, however, the potential adverse effects of systemic or global CNS pathway inhibition limits their use. Development of more targeted therapeutics will require a detailed understanding of JAK/STAT-induced epileptogenic responses in different cell types. To this end, we have developed a new transgenic line where dimer-dependent STAT3 signaling is functionally knocked out (fKO) by tamoxifen-induced Cre expression specifically in forebrain excitatory neurons (eNs) via the Calcium/Calmodulin Dependent Protein Kinase II alpha (CamK2a) promoter. Most recently, we have demonstrated that STAT3 KO in excitatory neurons (eNSTAT3fKO) markedly reduces the progression of epilepsy (SRS frequency) in the intrahippocampal kainate (IHKA) TLE model and protects mice from kainic acid (KA)-induced memory deficits as assessed by Contextual Fear Conditioning. Using data from bulk hippocampal tissue RNA-sequencing, we further discovered a transcriptomic signature for the IHKA model that contains a substantial number of genes, particularly in synaptic plasticity and inflammatory gene networks, that are down-regulated after KA-induced SE in wild-type but not eNSTAT3fKO mice. Finally, we will review data from other models of brain injury that lead to epilepsy, such as TBI, that implicate activation of the JAK/STAT pathway that may contribute to epilepsy development.

SeminarNeuroscienceRecording

Mechanisms to medicines in neurodegeneration

Giovann Mallucci
Department of Clinical Neurosciences, University of Cambridge
Nov 29, 2021

Dysregulation of protein synthesis both globally and locally in neurons and astrocytes is a key feature of neurodegenerative diseases. Aberrant signalling through the Unfolded Protein Response (UPR) and related Integrated Stress Response (ISR) have become major targets for neuroprotection in these disorders. In addition, other homeostatic mechanisms and stress responses, including the cold shock response, appear to regulate local translation and RNA splicing to control synapse maintenance and regeneration and can also be targeted therapeutically for neuroprotection. We have defined the role of UPR/ISR and the cold-shock response in neurodegenerative disorders and have developed translational strategies targeting them for new treatments for dementia.

SeminarPhysics of LifeRecording

Mechano-adaptation in a large protein complex

Navish Wadhwa
Harvard
Nov 21, 2021

Macromolecular protein complexes perform essential biological functions across life forms. A fundamental, though yet unsolved question in biology is how the function of such complexes is regulated by intracellular or extracellular signals. For instance, we have little understanding of how forces affect multi-protein machines whose function is often mechanical in nature. We address this question by studying the bacterial flagellar motor, a large complex that powers swimming motility in many bacteria. This rotary motor autonomously adapts to changes in mechanical load by adding or removing force-generating ‘stator’ units that power rotation. In the bacterium Escherichia coli, up to 11 units drive the motor at high load while all the units are released at low load. We manipulate motor load using electrorotation, a technique in which a rapidly rotating electric field applies an external torque on the motor. This allows us to change motor load at will and measure the resulting stator dynamics at single-unit resolution. We found that the force generated by the stator units controls their unbinding, forming a feedback loop that leads to autoregulation of the assembly. We complemented our experiments with theoretical models that provide insight into the underlying molecular interactions. Torque-dependent remodeling takes place within seconds, making it a highly responsive control mechanism, one that is mediated by the mechano-chemical tuning of protein interactions.

SeminarNeuroscience

Keeping axons alive after injury: Inhibiting programmed axon death

Stacey Gould
University of Cambridge
Nov 9, 2021

Activation of pro-degenerative protein SARM1 in response to diverse physical and disease-relevant injuries triggers programmed axon death. Original studies indicated substantially decreased levels of SARM1 were required for neuroprotection. However, we demonstrate that lowering SARM1 levels by 50% in Sarm1 haploinsufficient mice delays axon degeneration in vivo (after sciatic nerve transection), in vitro (in response to diverse traumatic, neurotoxic, and genetic triggers), and partially prevents neurite outgrowth defects in mice lacking pro-survival factor NMNAT2. We also demonstrate the capacity for Sarm1 antisense oligonucleotides to decrease SARM1 levels by more than 50% which delays or prevents programmed axon degeneration in vitro. Combining Sarm1 haploinsufficiency with antisense oligonucleotides further decreases SARM1 levels and prolongs protection after neurotoxic injuries. These data demonstrate that axon protection occurs in a Sarm1 gene-dose responsive manner and that SARM1 lowering agents have therapeutic potential. Thus, antisense oligonucleotide targeting of Sarm1 is a promising therapeutic strategy against diverse triggers of axon degeneration.

SeminarPhysics of LifeRecording

Making connections: how epithelial tissues guarantee folding

Hannah Yevick
MIT
Oct 24, 2021

Tissue folding is a ubiquitous shape change event during development whereby a cell sheet bends into a curved 3D structure. This mechanical process is remarkably robust, and the correct final form is almost always achieved despite internal fluctuations and external perturbations inherent in living systems. While many genetic and molecular strategies that lead to robust development have been established, much less is known about how mechanical patterns and movements are ensured at the population level. I will describe how quantitative imaging, physical modeling and concepts from network science can uncover collective interactions that govern tissue patterning and shape change. Actin and myosin are two important cytoskeletal proteins involved in the force generation and movement of cells. Both parts of this talk will be about the spontaneous organization of actomyosin networks and their role in collective tissue dynamics. First, I will present how out-of-plane curvature can trigger the global alignment of actin fibers and a novel transition from collective to individual cell migration in culture. I will then describe how tissue-scale cytoskeletal patterns can guide tissue folding in the early fruit fly embryo. I will show that actin and myosin organize into a network that spans a domain of the embryo that will fold. Redundancy in this supracellular network encodes the tissue’s intrinsic robustness to mechanical and molecular perturbations during folding.

SeminarNeuroscienceRecording

Dancing to a Different Tune: TANGO Gives Hope for Dravet Syndrome

Lori Isom
University of Michigan
Oct 19, 2021

The long-term goal of our research is to understand the mechanisms of SUDEP, defined as Sudden, Unexpected, witnessed or unwitnessed, nontraumatic and non-drowning Death in patients with EPilepsy, excluding cases of documented status epilepticus. The majority of SUDEP patients die during sleep. SUDEP is the most devastating consequence of epilepsy, yet little is understood about its causes and no biomarkers exist to identify at risk patients. While SUDEP accounts for 7.5-20% of all epilepsy deaths, SUDEP risk in the genetic epilepsies varies with affected genes. Patients with ion channel gene variants have the highest SUDEP risk. Indirect evidence variably links SUDEP to seizure-induced apnea, pulmonary edema, dysregulation of cerebral circulation, autonomic dysfunction, and cardiac arrhythmias. Arrhythmias may be primary or secondary to hormonal or metabolic changes, or autonomic discharges. When SUDEP is compared to Sudden Cardiac Death secondary to Long QT Syndrome, especially to LQT3 linked to variants in the voltage-gated sodium channel (VGSC) gene SCN5A, there are parallels in the circumstances of death. To gain insight into SUDEP mechanisms, our approach has focused on channelopathies with high SUDEP incidence. One such disorder is Dravet syndrome (DS), a devastating form of developmental and epileptic encephalopathy (DEE) characterized by multiple pharmacoresistant seizure types, intellectual disability, ataxia, and increased mortality. While all patients with epilepsy are at risk for SUDEP, DS patients may have the highest risk, up to 20%, with a mean age at SUDEP of 4.6 years. Over 80% of DS is caused by de novo heterozygous loss-of-function (LOF) variants in SCN1A, encoding the VGSC Nav1.1  subunit, resulting in haploinsufficiency. A smaller cohort of patients with DS or a more severe DEE have inherited, homozygous LOF variants in SCN1B, encoding the VGSC 1/1B non-pore-forming subunits. A related DEE, Early Infantile EE (EIEE) type 13, is linked to de novo heterozygous gain-of-function variants in SCN8A, encoding the VGSC Nav1.6. VGSCs underlie the rising phase and propagation of action potentials in neurons and cardiac myocytes. SCN1A, SCN8A, and SCN1B are expressed in both the heart and brain of humans and mice. Because of this, we proposed that cardiac arrhythmias contribute to the mechanism of SUDEP in DEE. We have taken a novel approach to the development of therapeutics for DS in collaboration with Stoke Therapeutics. We employed Targeted Augmentation of Nuclear Gene Output (TANGO) technology, which modulates naturally occurring, non-productive splicing events to increase target gene and protein expression and ameliorate disease phenotype in a mouse model. We identified antisense oligonucleotides (ASOs) that specifically increase the expression of productive Scn1a transcript in human and mouse cell lines, as well as in mouse brain. We showed that a single intracerebroventricular dose of a lead ASO at postnatal day 2 or 14 reduced the incidence of electrographic seizures and SUDEP in the F1:129S-Scn1a+/- x C57BL/6J mouse model of DS. Increased expression of productive Scn1a transcript and NaV1.1 protein were confirmed in brains of treated mice. Our results suggest that TANGO may provide a unique, gene-specific approach for the treatment of DS.

SeminarNeuroscience

Visualizing the multi-scale complexity of the brain

Guo-Qiang Bi
University of Science and Technology of China & Shenzhen Institute of Advanced Technology
Oct 10, 2021

The brain is complex over multiple length-scales, from many protein molecules forming intricate nano-machines in a synapse to many neurons forming interconnected networks across the brain. Unraveling this multi-scale complexity is fundamental to our understanding of brain function and disease. In this lecture, I will introduce advances in visualizing the complex, multi-scale structures in the brain. Emphasis will be on new imaging techniques, including cryo electron tomography and correlative light-electron microscopy that enabled revealing in situ organization of synaptic molecules, and ultra-high speed volumetric imaging method VISoR developed to map brain-wide circuits at subcellular resolution. I will also discuss challenges and opportunities for interdisciplinary research collaboration to analyze and understand the enormous data generated by these cutting-edge technologies.

SeminarPhysics of LifeRecording

How polymer-loop-extruding motors shape chromosomes

Ed Banigan
MIT
Sep 12, 2021

Chromosomes are extremely long, active polymers that are spatially organized across multiple scales to promote cellular functions, such as gene transcription and genetic inheritance. During each cell cycle, chromosomes are dramatically compacted as cells divide and dynamically reorganized into less compact, spatiotemporally patterned structures after cell division. These activities are facilitated by DNA/chromatin-binding protein motors called SMC complexes. Each of these motors can perform a unique activity known as “loop extrusion,” in which the motor binds the DNA/chromatin polymer, reels in the polymer fiber, and extrudes it as a loop. Using simulations and theory, I show how loop-extruding motors can collectively compact and spatially organize chromosomes in different scenarios. First, I show that loop-extruding complexes can generate sufficient compaction for cell division, provided that loop-extrusion satisfies stringent physical requirements. Second, while loop-extrusion alone does not uniquely spatially pattern the genome, interactions between SMC complexes and protein “boundary elements” can generate patterns that emerge in the genome after cell division. Intriguingly, these “boundary elements” are not necessarily stationary, which can generate a variety of patterns in the neighborhood of transcriptionally active genes. These predictions, along with supporting experiments, show how SMC complexes and other molecular machinery, such as RNA polymerase, can spatially organize the genome. More generally, this work demonstrates both the versatility of the loop extrusion mechanism for chromosome functional organization and how seemingly subtle microscopic effects can emerge in the spatiotemporal structure of nonequilibrium polymers.

SeminarPhysics of LifeRecording

Do leader cells drive collective behavior in Dictyostelium Discoideum amoeba colonies?

Sulimon Sattari
Hokkaido University
Aug 1, 2021

Dictyostelium Discoideum (DD) are a fascinating single-cellular organism. When nutrients are plentiful, the DD cells act as autonomous individuals foraging their local vicinity. At the onset of starvation, a few (<0.1%) cells begin communicating with others by emitting a spike in the chemoattractant protein cyclic-AMP. Nearby cells sense the chemical gradient and respond by moving toward it and emitting a cyclic-AMP spike of their own. Cyclic-AMP activity increases over time, and eventually a spiral wave emerges, attracting hundreds of thousands of cells to an aggregation center. How DD cells go from autonomous individuals to a collective entity remains an open question for more than 60 years--a question whose answer would shed light on the emergence of multi-cellular life. Recently, trans-scale imaging has allowed the ability to sense the cyclic-AMP activity at both cell and colony levels. Using both the images as well as toy simulation models, this research aims to clarify whether the activity at the colony level is in fact initiated by a few cells, which may be deemed "leader" or "pacemaker" cells. In this talk, I will demonstrate the use of information-theoretic techniques to classify leaders and followers based on trajectory data, as well as to infer the domain of interaction of leader cells. We validate the techniques on toy models where leaders and followers are known, and then try to answer the question in real data--do leader cells drive collective behavior in DD colonies?

SeminarPhysics of Life

Coordinated motion of active filaments on spherical surfaces

Eric Keaveny
Imperial College London
Jul 6, 2021

Filaments (slender, microscopic elastic bodies) are prevalent in biological and industrial settings. In the biological case, the filaments are often active, in that they are driven internally by motor proteins, with the prime examples being cilia and flagella. For cilia in particular, which can appear in dense arrays, their resulting motions are coupled through the surrounding fluid, as well as through surfaces to which they are attached. In this talk, I present numerical simulations exploring the coordinated motion of active filaments and how it depends on the driving force, density of filaments, as well as the attached surface. In particular, we find that when the surface is spherical, its topology introduces local defects in coordinated motion which can then feedback and alter the global state. This is particularly true when the surface is not held fixed and is free to move in the surrounding fluid. These simulations take advantage of a computational framework we developed for fully 3D filament motion that combines unit quaternions, implicit geometric time integration, quasi-Newton methods, and fast, matrix-free methods for hydrodynamic interactions and it will also be presented.

SeminarNeuroscience

Sleepless in Vienna - how to rescue folding-deficient dopamine transporters by pharmacochaperoning

Michael Freissmuth
Medical University of Vienna
Jun 17, 2021

Diseases that arise from misfolding of an individual protein are rare. However, collectively, these folding diseases represent a large proportion of hereditary and acquired disorders. In fact, the term "Molecular Medicine" was coined by Linus Pauling in conjunction with the study of a folding disease, i.e. sickle cell anemia. In the past decade, we have witnessed an exponential growth in the number of mutations, which have been identified in genes encoding solute carriers (SLC). A sizable faction - presumably the majority - of these mutations result in misfolding of the encoded protein. While studying the export of the GABA transporter (SLC6A1) and of the serotonin transporter (SLC6A4), from the endoplasmic reticulum (ER), we discovered by serendipity that some ligands can correct the folding defect imparted by point mutations. These bind to the inward facing state. The most effective compound is noribogaine, the metabolite of ibogaine (an alkaloid first isolated from the shrub Tabernanthe iboga). There are 13 mutations in the human dopamine transporter (DAT, SLC6A3), which give rise to a syndrome of infantile Parkinsonism and dystonia. We capitalized on our insights to explore, if the disease-relevant mutant proteins were amenable to pharmacological correction. Drosopohila melanogaster, which lack the dopamine transporter, are hyperactive and sleepless (fumin in Japanese). Thus, mutated human DAT variants can be introduced into fumin flies. This allows for examining the effect of pharmacochaperones on delivery of DAT to the axonal territory and on restoring sleep. We explored the chemical space populated by variations of the ibogaine structure to identify an analogue (referred to as compound 9b), which was highly effective: compound 9b also restored folding in DAT variants, which were not amenable to rescue by noribogaine. Deficiencies in the human creatine transporter-1 (CrT1, SLC6A8) give rise to a syndrome of intellectual disability and seizures and accounts for 5% of genetically based intellectual disabilities in boys. Point mutations occur, in part, at positions, which are homologous to those of folding-deficient DAT variants. CrT1 lacks the rich pharmacology of monoamine transporters. Nevertheless, our insights are also applicable to rescuing some disease-related variants of CrT1. Finally, the question arises how one can address the folding problem. We propose a two-pronged approach: (i) analyzing the effect of mutations on the transport cycle by electrophysiological recordings; this allows for extracting information on the rates of conformational transitions. The underlying assumption posits that - even when remedied by pharmacochaperoning - folding-deficient mutants must differ in the conformational transitions associated with the transport cycle. (ii) analyzing the effect of mutations on the two components of protein stability, i.e. thermodynamic and kinetic stability. This is expected to provide a glimpse of the energy landscape, which governs the folding trajectory.

SeminarNeuroscience

Central representations of protein availability regulating appetite and body weight control

Clemence Blouet
Wellcome-MRC Institute of Metabolic Science, University of Cambridge
Jun 13, 2021

Dietary protein quantity and quality greatly impact metabolic health via evolutionary-conserved mechanisms that ensure avoidance of amino acid imbalanced food sources, promote hyperphagia when dietary protein density is low, and conversely produce satiety when dietary protein density is high. Growing evidence support the emerging concept of protein homeostasis in mammals, where protein intake is maintained within a tight range independently of energy intake to reach a target protein intake. The behavioural and neuroendocrine mechanisms underlying these adaptations are unclear and form the focus of our research.

SeminarNeuroscience

Multimorbidity in the ageing human brain: lessons from neuropathological assessment

Kirsty McAleese
Newcastle University
Jun 7, 2021

Age-associated dementias are neuropathologically characterized by the identification of hallmark intracellular and extracellular deposition of proteins, i.e., hyperphosphorylated-tau, amyloid-β, and α-synuclein, or cerebrovascular lesions. The neuropathological assessment and staging of these pathologies allows for a diagnosis of a distinct disease, e.g., amyloid-β plaques and hyperphosphorylated tau pathology in Alzheimer's disease. Neuropathological assessment in large scale cohorts, such as the UK’s Brains for Dementia Research (BDR) programme, has made it increasingly clear that the ageing brain is characterized by the presence of multiple age-associated pathologies rather than just the ‘pure’ hallmark lesion as commonly perceived. These additional pathologies can range from low/intermediate levels, that are assumed to have little if any clinical significance, to a full-blown mixed disease where there is the presence of two distinct diseases. In our recent paper (McAleese et al. 2021 Concomitant neurodegenerative pathologies contribute to the transition from mild cognitive impairment to dementia, https://alz-journals.onlinelibrary.wiley.com/doi/full/10.1002/alz.12291, Alzheimer's & Dementia), using the BDR cohort, we investigated the frequency of multimorbidity and specifically investigated the impact of additional low-level pathology on cognition. In this study, of 670 donated post-mortem brains, we found that almost 70% of cases exhibited multimorbidity and only 22% were considered a pure diagnosis. Importantly, no case of Lewy Body dementia or vascular dementia was considered pure. A key finding is that the presence of low levels of additional pathology increased the likelihood of having mild dementia vs mild cognitive impairment by almost 20-fold, indicating low levels of additional pathology do impact the clinical progression of a distinct disease. Given the high prevalence and the potential clinical impact, cerebral multimorbidity should be at the forefront of consideration in dementia research.

SeminarPhysics of Life

Research talk: insight into protein allostery from designed mechanical networks

Andrea Liu
University of Pennsylvania
Jun 3, 2021
SeminarNeuroscience

Numbing intraneuronal Tau levels to prevent neurodegeneration in tauopathies

Michel Cayouette
Montreal Clinical Research Institute (IRCM)
May 30, 2021

Intraneuronal accumulation of the microtubule associated protein Tau is largely recognized as an important toxic factor linked to neuronal cell death in Alzheimer’s disease and tauopathies. While there has been progress uncovering mechanisms leading to the formation of toxic Tau tangles, less is known about how intraneuronal Tau levels are regulated in health and disease. Here, I will discuss our recent work showing that the intracellular trafficking adaptor protein Numb is critical to control intraneuronal Tau levels. Inactivation of Numb in retinal ganglion cells increases monomeric and oligomeric Tau levels and leads to axonal blebbing in optic nerves, followed by significant neuronal cell loss in old mice. Interestingly, overexpression of the long isoform of Numb (Numb-72) decreases intracellular Tau levels by promoting exocytosis of monomeric Tau. In TauP301S and triple transgenic AD mouse models, expression of Numb-72 in RGCs reduces the number of axonal blebs and prevents neurodegeneration. Finally, inactivation of Numb in TauP301S mice accelerates neurodegeneration in both the retina and spinal cord and leads to precocious paralysis. Taken together, these results uncover Numb as a essential regulator of Tau homeostasis in neurons and as a potential therapeutic agent for AD and tauopathies.

SeminarNeuroscience

Brain-body interactions in the metabolic/nutritional control of puberty: Neuropeptide pathways and central energy sensors

Manuel Tena-Sempere
IMIBIC Cordoba
May 30, 2021

Puberty is a brain-driven phenomenon, which is under the control of sophisticated regulatory networks that integrate a large number of endogenous and environmental signals, including metabolic and nutritional cues. Puberty onset is tightly bound to the state of body energy reserves, and deregulation of energy/metabolic homeostasis is often associated with alterations in the timing of puberty. However, despite recent progress in the field, our knowledge of the specific molecular mechanisms and pathways whereby our brain decode metabolic information to modulate puberty onset remains fragmentary and incomplete. Compelling evidence, gathered over the last fifteen years, supports an essential role of hypothalamic neurons producing kisspeptins, encoded by Kiss1, in the neuroendocrine control of puberty. Kiss1 neurons are major components of the hypothalamic GnRH pulse generator, whose full activation is mandatory pubertal onset. Kiss1 neurons seemingly participate in transmitting the regulatory actions of metabolic cues on pubertal maturation. However, the modulatory influence of metabolic signals (e.g., leptin) on Kiss1 neurons might be predominantly indirect and likely involves also the interaction with other transmitters and neuronal populations. In my presentation, I will review herein recent work of our group, using preclinical models, addressing the molecular mechanisms whereby Kiss1 neurons are modulated by metabolic signals, and thereby contribute to the nutritional control of puberty. In this context, the putative roles of the energy/metabolic sensors, AMP-activated protein kinase (AMPK) and SIRT1, in the metabolic control of Kiss1 neurons and puberty will be discussed. In addition, I will summarize recent findings from our team pointing out a role of central de novo ceramide signaling in mediating the impact of obesity of (earlier) puberty onset, via non-canonical, kisspeptin-related pathways. These findings are posed of translational interest, as perturbations of these molecular pathways could contribute to the alterations of pubertal timing linked to conditions of metabolic stress in humans, ranging from malnutrition to obesity, and might become druggable targets for better management of pubertal disorders.

SeminarNeuroscienceRecording

A fresh look at the bird retina

Karin Dedek
University of Oldenburg
May 30, 2021

I am working on the vertebrate retina, with a main focus on the mouse and bird retina. Currently my work is focused on three major topics: Functional and molecular analysis of electrical synapses in the retina Circuitry and functional role of retinal interneurons: horizontal cells Circuitry for light-dependent magnetoreception in the bird retina Electrical synapses Electrical synapses (gap junctions) permit fast transmission of electrical signals and passage of metabolites by means of channels, which directly connect the cytoplasm of adjoining cells. A functional gap junction channel consists of two hemichannels (one provided by each of the cells), each comprised of a set of six protein subunits, termed connexins. These building blocks exist in a variety of different subtypes, and the connexin composition determines permeability and gating properties of a gap junction channel, thereby enabling electrical synapses to meet a diversity of physiological requirements. In the retina, various connexins are expressed in different cell types. We study the cellular distribution of different connexins as well as the modulation induced by transmitter action or change of ambient light levels, which leads to altered electrical coupling properties. We are also interested in exploiting them as therapeutic avenue for retinal degeneration diseases. Horizontal cells Horizontal cells receive excitatory input from photoreceptors and provide feedback inhibition to photoreceptors and feedforward inhibition to bipolar cells. Because of strong electrical coupling horizontal cells integrate the photoreceptor input over a wide area and are thought to contribute to the antagonistic organization of bipolar cell and ganglion cell receptive fields and to tune the photoreceptor–bipolar cell synapse with respect to the ambient light conditions. However, the extent to which this influence shapes retinal output is unclear, and we aim to elucidate the functional importance of horizontal cells for retinal signal processing by studying various transgenic mouse models. Retinal circuitry for light-dependent magnetoreception in the bird We are studying which neuronal cell types and pathways in the bird retina are involved in the processing of magnetic signals. Likely, magnetic information is detected in cryptochrome-expressing photoreceptors and leaves the retina through ganglion cell axons that project via the thalamofugal pathway to Cluster N, a part of the visual wulst essential for the avian magnetic compass. Thus, we aim to elucidate the synaptic connections and retinal signaling pathways from putatively magnetosensitive photoreceptors to thalamus-projecting ganglion cells in migratory birds using neuroanatomical and electrophysiological techniques.

SeminarPhysics of LifeRecording

Trapping active particles up to the limiting case: bacteria enclosed in a biofilm

Chantal Valeriani
Complutense Madrid
May 25, 2021

Active matter systems are composed of constituents, each one in nonequilibrium, that consume energy in order to move [1]. A characteristic feature of active matter is collective motion leading to nonequilibrium phase transitions or large scale directed motion [2]. A number of recent works have featured active particles interacting with obstacles, either moving or fixed [3,4,5]. When an active particle encounters an asymmetric obstacle, different behaviours are detected depending on the nature of its active motion. On the one side, rectification effects arise in a suspension of run-and-tumble particles interacting with a wall of funnelled-shaped openings, caused by particles persistence length [6]. The same trapping mechanism could be responsible for the intake of microorganisms in the underground leaves [7] of Carnivorous plants [8]. On the other side, for aligning particles [9] interacting with a wall of funnelled-shaped openings, trapping happens on the (opposite) wider opening side of the funnels [10,11]. Interestingly, when funnels are located on a circular array, trapping is more localised and depends on the nature of the Vicsek model. Active particles can be synthetic (such as synthetic active colloids) or alive (such as living bacteria). A prototypical model to study living microswimmers is P. fluorescens, a rod shaped and biofilm forming bacterium. Biofilms are microbial communities self-assembled onto external interfaces. Biofilms can be described within the Soft Matter physics framework [12] as a viscoelastic material consisting of colloids (bacterial cells) embedded in a cross-linked polymer gel (polysaccharides cross-linked via proteins/multivalent cations), whose water content vary depending on the environmental conditions. Bacteria embedded in the polymeric matrix control biofilm structure and mechanical properties by regulating its matrix composition. We have recently monitored structural features of Pseudomonas fluorescens biofilms grown with and without hydrodynamic stress [13,14]. We have demonstrated that bacteria are capable of self-adapting to hostile hydrodynamic stress by tailoring the biofilm chemical composition, thus affecting both the mesoscale structure of the matrix and its viscoelastic properties that ultimately regulate the bacteria-polymer interactions. REFERENCES [1] C. Bechinger et al. Rev. Mod. Phys. 88, 045006 (2016); [2] T. Vicsek, A. Zafeiris Phys. Rep. 517, 71 (2012); [3] C. Bechinger, R. Di Leonardo, H. Lowen, C. Reichhardt, G. Volpe, and G. Volpe, Reviews of Modern Physics 88, 045006 (2016); [4] R Martinez, F Alarcon, DR Rodriguez, JL Aragones, C Valeriani The European Physical Journal E 41, 1 (2018); [5] DR Rodriguez, F Alarcon, R Martinez, J Ramírez, C Valeriani, Soft matter 16 (5), 1162 (2020); [6] C. O. Reichhardt and C. Reichhardt, Annual Review of Condensed Matter
Physics 8, 51 (2017); [7] W Barthlott, S Porembski, E Fischer, B Gemmel Nature 392, 447 (1998); [8] C B. Giuliano, R Zhang, R.Martinez Fernandez, C.Valeriani and L.Wilson (in preparation, 2021); [9] R Martinez, F Alarcon, JL Aragones, C Valeriani Soft matter 16 (20), 4739 (2020); [10] P. Galajada, J. Keymer, P. Chaikin and R.Austin, Journal of bacteriology, 189, 8704 (2007); [11] M. Wan, C.O. Reichhardt, Z. Nussinov, and C. Reichhardt, Physical Review Letters 101, 018102 (2008); [12] J N. Wilking , T E. Angelini , A Seminara , M P. Brenner , and D A. Weitz MRS Bulletin 36, 385 (2011); [13]J Jara, F Alarcón, A K Monnappa, J Ignacio Santos, V Bianco, P Nie, M Pica Ciamarra, A Canales, L Dinis, I López-Montero, C Valeriani, B Orgaz, Frontiers in microbiology 11, 3460 (2021); [14] P Nie, F Alarcon, I López-Montero, B Orgaz, C Valeriani, M Pica Ciamarra

SeminarPhysics of Life

Curved protein IRSp53 driven protrusion initiation

Feng Ching-Tsai
Instit Curie
May 20, 2021
SeminarPhysics of LifeRecording

Energy landscapes, order and disorder, and protein sequence coevolution: From proteins to chromosome structure

Jose Onuchic
Rice University
May 13, 2021

In vivo, the human genome folds into a characteristic ensemble of 3D structures. The mechanism driving the folding process remains unknown. A theoretical model for chromatin (the minimal chromatin model) explains the folding of interphase chromosomes and generates chromosome conformations consistent with experimental data is presented. The energy landscape of the model was derived by using the maximum entropy principle and relies on two experimentally derived inputs: a classification of loci into chromatin types and a catalog of the positions of chromatin loops. This model was generalized by utilizing a neural network to infer these chromatin types using epigenetic marks present at a locus, as assayed by ChIP-Seq. The ensemble of structures resulting from these simulations completely agree with HI-C data and exhibits unknotted chromosomes, phase separation of chromatin types, and a tendency for open chromatin to lie at the periphery of chromosome territories. Although this theoretical methodology was trained in one cell line, the human GM12878 lymphoblastoid cells, it has successfully predicted the structural ensembles of multiple human cell lines. Finally, going beyond Hi-C, our predicted structures are also consistent with microscopy measurements. Analysis of both structures from simulation and microscopy reveals that short segments of chromatin make two-state transitions between closed conformations and open dumbbell conformations. For gene active segments, the vast majority of genes appear clustered in the linker region of the chromatin segment, allowing us to speculate possible mechanisms by which chromatin structure and dynamics may be involved in controlling gene expression. * Supported by the NSF

SeminarNeuroscience

Advances and setbacks in prion biology

Adriano Aguzzi
University of Zurich
May 10, 2021

Transmissible spongiform encephalopathies (TSEs) are neurodegenerative diseases of humans and many animal species caused by prions. The main constituent of prions is PrPSc, an aggregated moiety of the host-derived membrane glycolipoprotein PrPC. Prions were found to encipher many phenotypic, genetically stable TSE variants. The latter is very surprising, since PrPC is encoded by the host genome and all prion strains share the same amino acid sequence. Here I will review what is known about the infectivity, the neurotoxicity, and the neuroinvasiveness of prions. Also, I will explain why I regard the prion strain question as a fascinating challenge – with implications that go well beyond prion science. Finally, I will report some recent results obtained in my laboratory, which is attempting to address the strain question and some other basic issues of prion biology with a “systems” approach that utilizes organic chemistry, photophysics, proteomics, and mouse transgenesis.

SeminarPhysics of LifeRecording

Liquid-liquid phase separation out of equilibrium

Alexandra Tayar
UCSB
Apr 25, 2021

Living cells contain millions of enzymes and proteins, which carry out multiple reactions simultaneously. To optimize these processes, cells compartmentalize reactions in membraneless liquid condensates. Certain features of cellular condensates can be explained by principles of liquid-liquid phase separation studied in material science. However, biological condensates exist in the inherently out of equilibrium environment of a living cell, being driven by force-generating microscopic processes. These cellular conditions are fundamentally different than the equilibrium conditions of liquid-liquid phase separation studied in materials science and physics. How condensates function in the active riotous environment of a cell is essential for understanding of cellular functions, as well as to the onset of neurodegenerative diseases. Currently, we lack model systems that enable rigorous studies of these processes. Living cells are too complex for quantitative analysis, while reconstituted equilibrium condensates fail to capture the non-equilibrium environment of biological cells. To bridge this gap, we reconstituted a DNA based membraneless condensates in an active environment that mimics the conditions of a living cell. We combine condensates with a reconstituted network of cytoskeletal filaments and molecular motors, and study how the mechanical interactions change the phase behavior and dynamics of membraneless structures. Studying these composite materials elucidates the fundamental physics rules that govern the behavior of liquid-liquid phase separation away from equilibrium while providing insight into the mechanism of condensate phase separation in cellular environments.

SeminarNeuroscience

Targeting selective autophagy against neurodegenerative diseases

Ana Maria Cuervo
Albert Einstein College of Medicine, New York, USA
Apr 20, 2021

Protein quality control is essential for maintenance of a healthy and functional proteome that can attend the multiplicity of cellular functions. Failure of the systems that contribute to protein homeostasis, the so called proteostasis networks, have been identified in the pathogenesis of multiple neurodegenerative disorders and demonstrated to contribute to disease onset and progression. We are interested in autophagy, one of the components of the proteostasis network, and in the interplay of wo selective types of autophagy, chaperone-mediated autophagy (CMA) and endosomal microautophagy (eMI), with neurodegeneration. We have recently found that pathogenic proteins involved in common neurodegenerative conditions such as tauopathies or Parkinson’s disease, can exert a toxic effect in both types of selective types of autophagy compromising their functioning. We have now used mouse models with compromised CMA that support increased propagation of proteins such as tau and alpha-synuclein and an exacerbation of disease phenotype with aging. Conversely, genetic or chemical upregulation of CMA in this context of proteotoxicity slow down disease progression by facilitating effective intracellular removal of pathogenic proteins. Our findings highlight CMA and eMI as potential novel therapeutic targets against neurodegeneration.

SeminarNeuroscience

The retrotrapezoid nucleus: an integrative and interoceptive hub in neural control of breathing

Douglas A. Bayliss
University of Virginia
Apr 11, 2021

In this presentation, we will discuss the cellular and molecular properties of the retrotrapezoid nucleus (RTN), an integrative and interoceptive control node for the respiratory motor system. We will present the molecular profiling that has allowed definitive identification of a cluster of tonically active neurons that provide a requisite drive to the respiratory central pattern generator (CPG) and other pre-motor neurons. We will discuss the ionic basis for steady pacemaker-like firing, including by a large subthreshold oscillation; and for neuromodulatory influences on RTN activity, including by arousal state-dependent neurotransmitters and CO2/H+. The CO2/H+-dependent modulation of RTN excitability represents the sensory component of a homeostatic system by which the brain regulates breathing to maintain blood gases and tissue pH; it relies on two intrinsic molecular proton detectors, both a proton-activated G protein-coupled receptor (GPR4) and a proton-inhibited background K+ channel (TASK-2). We will also discuss downstream neurotransmitter signaling to the respiratory CPG, focusing especially on a newly-identified peptidergic modulation of the preBötzinger complex that becomes activated following birth and the initiation of air breathing. Finally, we will suggest how the cellular and molecular properties of RTN neurons identified in rodent models may contribute to understanding human respiratory disorders, such as congenital central hypoventilation syndrome (CCHS) and sudden infant death syndrome (SIDS).

SeminarNeuroscience

The dynamic behaviour of mRNAs and splicing proteins in developing axons

Corinne Houart
King's College London
Mar 28, 2021

Recent findings have revealed that mRNAs have a much more dynamic behaviour than initially described. This is particularly true in neurons, where mRNAs are transported to specific axonal and dendritic areas. The seminar will present our most recent findings unveiling complex mRNA processing dynamics driven by splicing proteins in developing axons.

SeminarNeuroscience

Translational upregulation of STXBP1 by non-coding RNAs as an innovative treatment for STXBP1 encephalopathy

Federico Zara & Ganna Balagura
Institute G. Gaslini, University of Genoa
Mar 16, 2021

Developmental and epileptic encephalopathies (DEEs) are a broad spectrum of genetic epilepsies associated with impaired neurological development as a direct consequence of a genetic mutation, in addition to the effect of the frequent epileptic activity on brain. Compelling genetic studies indicate that heterozygous de novo mutations represent the most common underlying genetic mechanism, in accordance with the sporadic presentation of DEE. De novo mutations may exert a loss-of-function (LOF) on the protein by decrementing expression level and/or activity, leading to functional haploinsufficiency. These diseases share several features: severe and frequent refractory seizures, diffusely abnormal background activity on EEG, intellectual disability often profound, and severe consequences on global development. One of major causes of early onset DEE are de novo heterozygous mutations in syntaxin-binding-protein-1 gene STXBP1, which encodes a membrane trafficking protein playing critical role in vesicular docking and fusion. LOF STXBP1 mutations lead to a failure of neurotransmitter secretion from synaptic vesicles. Core clinical features of STXBP1 encephalopathy include early-onset epilepsy with hypsarrhythmic EEG, or burst-suppression pattern, or multifocal epileptiform activity. Seizures are often resistant to standard treatments and patients typically show intellectual disability, mostly severe to profound. Additional neurologic features may include autistic traits, movement disorders (dyskinesia, dystonia, tremor), axial hypotonia, and ataxia, indicating a broader neurologic impairment. Patients with severe neuro-cognitive features but without epilepsy have been reported. Recently, a new class of natural and synthetic non-coding RNAs have been identified, enabling upregulation of protein translation in a gene-specific way (SINEUPs), without any increase in mRNA of the target gene. SINEUPs are translational activators composed by a Binding Domain (BD) that overlaps, in antisense orientation, to the sense protein-coding mRNA, and determines target selection; and an Effector Domain (ED), that is essential for protein synthesis up regulation. SINEUPs have been shown to restore the physiological expression of a protein in case of haploinsufficiency, without driving excessive overexpression out of the physiological range. This technology brings many advantages, as it mainly acts on endogenous target mRNAs produced in situ by the wild-type allele; this action is limited to mRNA under physiological regulation, therefore no off-site effects can be expected in cells and tissues that do not express the target transcript; by acting only on a posttranscriptional level, SINEUPs do not trigger hereditable genome editing. After bioinformatic analysis of the promoter region of interest, we designed SINEUPs with 3 different BD for STXBP1. Human neurons from iPSCs were treated and STXBP1 levels showed a 1.5-fold increase compared to the Negative control. RNA levels of STXBP1 after the administration of SINEUPs remained stable as expected. These preliminary results proved the SINEUPs potential to specifically increase the protein levels without impacting on the genome. This is an extremely flexible approach to target many developmental and epileptic encephalopathies caused by haploinsufficiency, and therefore to address these diseases in a more tailored and radical way.

SeminarNeuroscience

How the immune system shapes synaptic functions

Michela Matteoli
Humanitas Research Hospital and CNR Institute of Neuroscience, Milano, Italy
Mar 15, 2021

The synapse is the core component of the nervous system and synapse formation is the critical step in the assembly of neuronal circuits. The assembly and maturation of synapses requires the contribution of secreted and membrane-associated proteins, with neuronal activity playing crucial roles in regulating synaptic strength, neuronal membrane properties, and neural circuit refinement. The molecular mechanisms of synapse assembly and refinement have been so far largely examined on a gene-by-gene basis and with a perspective fully centered on neuronal cells. However, in the last years, the involvement of non-neuronal cells has emerged. Among these, microglia, the resident immune cells of the central nervous system, have been shown to play a key role in synapse formation and elimination. Contacts of microglia with dendrites in the somatosensory cortex were found to induce filopodia and dendritic spines via Ca2+ and actin-dependent processes, while microglia-derived BDNF was shown to promote learning-dependent synapse formation. Microglia is also recognized to have a central role in the widespread elimination (or pruning) of exuberant synaptic connections during development. Clarifying the processes by which microglia control synapse homeostasis is essential to advance our current understanding of brain functions. Clear answers to these questions will have important implications for our understanding of brain diseases, as the fact that many psychiatric and neurological disorders are synaptopathies (i.e. diseases of the synapse) is now widely recognized. In the last years, my group has identified TREM2, an innate immune receptor with phagocytic and antiinflammatory properties expressed in brain exclusively by microglia, as essential for microglia-mediated synaptic refinement during the early stages of brain development. The talk will describe the role of TREM2 in synapse elimination and introduce the molecular actors involved. I will also describe additional pathways by which the immune system may affect the formation and homeostasis of synaptic contacts.

SeminarPhysics of Life

A protein that acts like a paper ball: Glassy dynamics and memory effects in the mechanical response of a disordered protein

Omar Saleh
University of California, Santa Barbara
Mar 4, 2021
ePoster

How local protein synthesis affects the size of dendritic protein pool

Kanaan Mousaei, Cornelius Bergmann, Tatjana Tchumatchenko

Bernstein Conference 2024

ePoster

AutSim: Principled, data driven model development and abstraction for signaling in synaptic protein synthesis in Fragile X Syndrome (FXS) and healthy control.

COSYNE 2022

ePoster

Accelerated epigenetic aging involves Polycomb group proteins in Huntington’s disease

Baptiste Brulé, Rafael Alcalá-Vida, Noémie Penaud, Jil Scuto, Charles Decraene, Stéphanie Le Gras, Brigitte Cosquer, Anne-Laurence Boutillier, Karine Merienne

FENS Forum 2024

ePoster

An activity-dependent local transport regulation via local synthesis of kinesin superfamily proteins (KIFs) underlying cognitive flexibility

Suguru Iwata, Momo Morikawa, Tetsuya Sasaki, Yosuke Takei

FENS Forum 2024

ePoster

Amyloid beta 1-42 and alpha-synuclein proteins: Effects on transcription factor expression

Pelin Sordu, Merve Alaylıoğlu, Zuhal Yurttaş, Tugay Çamoğlu, Büşra Şengül-Yediel, Ebru Keskin, Duygu Gezen-Ak, Erdinç Dursun

FENS Forum 2024

ePoster

Analysis of anxiety-related/social behaviour and neural circuitry abnormalities in ligand of Numb protein X (LNX) knockout mice

Laura Cioccarelli, Joan Lenihan, Leah Erwin, Paul Young

FENS Forum 2024

ePoster

Analysis of Gemin3 protein regulation and intracellular pathways in motor neurons in the context of spinal muscular atrophy

Marc Estarellas, Ana Garcera, Rosa M Soler

FENS Forum 2024

ePoster

Astrocytic S100B protein in experimental autoimmune encephalomyelitis processes

Fabrizio Michetti, Gabriele DiSante, Elisabetta Clementi, Rosa DiLiddo, Federica Valeriani, Francesco Ria, Mario Rende, Vincenzo Romano Spica

FENS Forum 2024

ePoster

Atypical astrocytes in the aging brain: An underreported phenotype where downregulated membrane proteins disrupt glial regulated homeostatic capacities

Mary Sommer, Moritz Armbruster, Reyna Gariepy, Panorea Tirja, Miranda Elizabeth Good, Saptarnab Naskar, Michael Mcconnell, Knarik Arkun, Chenghua Gu, Chris Dulla

FENS Forum 2024

ePoster

Bioorthogonal tag: A modern way to visualize polyaminated proteins in hippocampus

Aleksandra Owczarek, Maciej Zakrzewski, Filip Suchożebski, Julia Łukasiewicz, Remigiusz Serva, Michał Węgrzynowicz

FENS Forum 2024

ePoster

The brain-gut axis in Alzheimer’s disease: Insights into a new clearance mechanism of amyloid beta peptide and tau protein

Maxime Seignobos, Sylvie Boisseau, Frédérique Vossier, Alain Buisson, Muriel Jacquier-Sarlin

FENS Forum 2024

ePoster

Brain bioluminolysis of a G protein-coupled receptor photodrug

Glòria Salort Flaquer, Marc López-Cano, Kenneth A. Jacobson, Francisco Ciruela

FENS Forum 2024

ePoster

C-terminal binding protein 1 is necessary for normal migration of adult-born neurons

Burcu Sucu, Neeraja Suresh, Lena Marx, Enes Yağız Akdaş, Bartomeu Perelló-Amorós, Renato Frischknecht, Anna Fejtová

FENS Forum 2024

ePoster

Cell-specific regulation of neuronal and glial glucose metabolism by neurodegeneration-associated protein TDP-43

Ismail Gbadamosi, Lesley Motherwell, Izabela Lepiarz-Raba, Dorota Dymkowska, Ali Jawaid

FENS Forum 2024

ePoster

Characterisation of Magi-family synaptic scaffolding proteins in human iPSC-derived neurons

Maximilian Borgmeyer, Julia Knocks, Tomas Fanutza, Lukas Einhäupl, Doris Lau, Christian Wozny, Nina Wittemayer

FENS Forum 2024

ePoster

Characterisation of monoamine G-protein coupled receptors in Octopus vulgaris

Anna Jansson, Amy Courtney, Eve Seuntjens, William Schafer

FENS Forum 2024

ePoster

Characterization of transgenic mouse lines overexpressing the ovine prion protein using well-defined scrapie and bovine spongiform encephalopathy strains

Olanrewaju Fatola, Markus Keller, Anne Balkema-Buschmann, James Olopade, Martin H. Groschup, Christine Fast

FENS Forum 2024

ePoster

Chronic visualization of microcirculation in mice using viral vectors expressing fluorescent protein-fused albumin

Xiaowen Wang, Marta Vittani, Christine Delle, Antonis Asiminas, Philip Alexander Gade Knak, Ayumu Konno, Masahiro Fukuda, Hirokazu Hirai, Maiken Nedergaard, Hajime Hirase

FENS Forum 2024

ePoster

Control of neural precursor cells proliferation and differentiation by the Fragile X messenger ribonucleoprotein 1 (FMRP): Insights into the etiology of Fragile X Syndrome

Olivier Dionne, Salomé Sabatie, Mariano Avino, François Corbin, Benoit Laurent

FENS Forum 2024

ePoster

CYFIP1 associates with astrocytic focal adhesion, distinct from CYFIP2: Analysis of protein interactome and cellular expression profiling

Ruiying Ma, Kaifang Pang, Hyojin Kang, Yinhua Zhang

FENS Forum 2024

ePoster

Direct visualization of protein aggregates in synaptosomes

Shekhar Kedia, Emre Fertan, Yunzhao Wu, Yu P Zhang, John S H Danial, Maria Grazia Spillantini, David Klenerman

FENS Forum 2024

ePoster

Disentangling protein synthesis, trafficking, and degradation across the mouse brain

Cornelius Bergmann, Boaz Mohar, Morgan Clarke, Tatjana Tchumatchenko

FENS Forum 2024

ePoster

Dopamine increases the protein synthesis rate in the hippocampus enabling dopamine-dependent LTP

Tanja Fuchsberger, Imogen Stockwell, Matty Woods, Zuzanna Brzosko, Ingo Greger, Ole Paulsen

FENS Forum 2024

ePoster

Distinct calcium sources regulate the temporal profiles of NMDAR and mGluR mediated protein synthesis in neurons

Bindushree Kapu Radhakrishna, Sarayu Ramakrishna, Nisa Shah, Ahamed Kaladiyil, Nimisha Basavaraj, Kristine Freude, Reddy Kommaddi, Ravi Muddashetty

FENS Forum 2024

ePoster

DREAM protein inhibition as a potential treatment against NAFLD and metabolic syndrome and its associated neurologic signs in mice

José Manuel Hernández Curiel, Ángel Manuel Carrión Rodríguez, Juan Antonio Fernández Cabrera, Inés Sánchez Romero

FENS Forum 2024

ePoster

Effects of SARS-CoV-2 S1 protein and RNA vaccines on mixed neuronal-glial cell cultures

Vytenis Markevičius, Vilmante Borutaite

FENS Forum 2024

ePoster

Elucidating a novel role of Parkinson’s disease-associated protein Parkin (PARK2) in synaptic membrane trafficking

Sidra Mohamed Yaqoob, Mian Cao

FENS Forum 2024

ePoster

Elucidating the role of α2δ proteins in synapse organization

Clarissa Eibl, Ruslan Stanika, Cornelia Ablinger, Sabrin Haddad, Gerald J. Obermair

FENS Forum 2024

ePoster

ESCRT proteins as targets for novel antipsychotic drugs

Mohamed Shalaby

FENS Forum 2024

ePoster

Evaluation of synaptic connectivity and dysfunction in aging mouse brains using an RNAscope multiomic spatial imaging assay (MSIA) that detects RNA, proteins, and protein interactions

Chengxin Zhou, Zhenhua Li, Ji Zhang, Yifan Wang, Pehr Williamson, Ge-Ah Kim, Sonali Deshpande, Miao Yuan, Suganya Chandrababu, Lina Duan, Ching-Wei Chang, Betty Booker, Li-chong Wang, Maithreyan Srinivasan

FENS Forum 2024

ePoster

Exploring the function of the synaptic adaptor protein p140Cap in human excitatory neurons derived from iPSCs

Mario De Gregorio, Alessandro Morellato, Olga Teresa Bianciotto, Arianna Colombino, Beatrice Bersia, Zoe Lesti, Samuele Marro, Emilia Turco, Paola Defilippi

FENS Forum 2024

ePoster

Exploring the role of UCP2 uncoupling protein 2 (UCP2) in social behaviour through vasopressinergic pathways

Adrienn Szabó, Erika Eliza Kvak, Tibor Zoltán Jánosi, Dóra Zelena

FENS Forum 2024

ePoster

Expression of membrane proteins is disrupted in C9orf72 mutation ALS and FTD

Urša Čerček, Jerneja Nimac, Vera Župunski, Boris Rogelj

FENS Forum 2024

ePoster

Fasciculation elongation protein zeta 1 (FEZ1) participates in corticogenesis

Ying Hua Qu, Jonathan Lim, Omer An, Henry Yang, Yi-Chin Toh, John Jia En Chua

FENS Forum 2024

ePoster

New fluorescent molecular probes for ex vivo assessment of neurodegenerative protein conformational pathology

Lana Blinc, Mateja Drolec Novak, Jerneja Kladnik, Matic Rogan, Damijan Knez, Jernej Mlakar, Ross Jansen-van Vuuren, Janez Košmrlj, Mara Bresjanac

FENS Forum 2024

ePoster

Fragile-X-messenger ribonucleoprotein mediates BDNF-induced upregulation of GluN2B-containing NMDA receptors: Role in LTP of CA1 synapses

Elisa Corti, Paulo Pinheiro, Ramiro Almeida, Carlos Bandeira Duarte

FENS Forum 2024

ePoster

Function determination for structural domains of secretagogin, an EF-hand Ca2+-sensor protein

Anika Raabgrund, Robert Schnell, Thomas Hökfelt, Tibor Harkany, Zsofia Hevesi

FENS Forum 2024

ePoster

Glycosylation of synaptic vesicle glycoprotein 2C (SV2C) in cellular trafficking: Impact on Parkinson's disease

Png Wen Yang, Cao Mian

FENS Forum 2024

ePoster

The herpesvirus nuclear export protein BFRF1 attenuates polyQ-expanded Ataxin 3 induced toxicity in a Drosophila model of SCA3

Ming-Tsan Su, Yu-Hsuan Hsu, Chung-pei Lee

FENS Forum 2024

ePoster

The distribution of synapse-relevant proteins along dendrite

Shirin Shafiee, Silvio Rizzoli, Christian Tetzlaff

Bernstein Conference 2024