Psychedelics
psychedelics
Investigating the Neurobiology and Neurophysiology of Psilocybin Using Drosophila melanogaster as a Model System
Influence of the context of administration in the antidepressant-like effects of the psychedelic 5-MeO-DMT
Psychedelics like psilocybin have shown rapid and long-lasting efficacy on depressive and anxiety symptoms. Other psychedelics with shorter half-lives, such as DMT and 5-MeO-DMT, have also shown promising preliminary outcomes in major depression, making them interesting candidates for clinical practice. Despite several promising clinical studies, the influence of the context on therapeutic responses or adverse effects remains poorly documented. To address this, we conducted preclinical studies evaluating the psychopharmacological profile of 5-MeO-DMT in contexts previously validated in mice as either pleasant (positive setting) or aversive (negative setting). Healthy C57BL/6J male mice received a single intraperitoneal (i.p.) injection of 5-MeO-DMT at doses of 0.5, 5, and 10 mg/kg, with assessments at 2 hours, 24 hours, and one week post-administration. In a corticosterone (CORT) mouse model of depression, 5-MeO-DMT was administered in different settings, and behavioral tests mimicking core symptoms of depression and anxiety were conducted. In CORT-exposed mice, an acute dose of 0.5 mg/kg administered in a neutral setting produced antidepressant-like effects at 24 hours, as observed by reduced immobility time in the Tail Suspension Test (TST). In a positive setting, the drug also reduced latency to first immobility and total immobility time in the TST. However, these beneficial effects were negated in a negative setting, where 5-MeO-DMT failed to produce antidepressant-like effects and instead elicited an anxiogenic response in the Elevated Plus Maze (EPM).Our results indicate a strong influence of setting on the psychopharmacological profile of 5-MeO-DMT. Future experiments will examine cortical markers of pre- and post-synaptic density to correlate neuroplasticity changes with the behavioral effects of 5-MeO-DMT in different settings.
Psychedelics and related plasticity-promoting neurotherapeutics
Dr. David E. Olson will give a talk addressed to the Humanitas University Undergraduate Neurological Society students, focusing on his work on psychedelic drugs and related plasticity-promoting neurotherapeutics. The event will begin with a general and brief introduction to the topic by the HUUNS members.
Neural mechanisms of altered states of consciousness under psychedelics
Interest in psychedelic compounds is growing due to their remarkable potential for understanding altered neural states and their breakthrough status to treat various psychiatric disorders. However, there are major knowledge gaps regarding how psychedelics affect the brain. The Computational Neuroscience Laboratory at the Turner Institute for Brain and Mental Health, Monash University, uses multimodal neuroimaging to test hypotheses of the brain’s functional reorganisation under psychedelics, informed by the accounts of hierarchical predictive processing, using dynamic causal modelling (DCM). DCM is a generative modelling technique which allows to infer the directed connectivity among brain regions using functional brain imaging measurements. In this webinar, Associate Professor Adeel Razi and PhD candidate Devon Stoliker will showcase a series of previous and new findings of how changes to synaptic mechanisms, under the control of serotonin receptors, across the brain hierarchy influence sensory and associative brain connectivity. Understanding these neural mechanisms of subjective and therapeutic effects of psychedelics is critical for rational development of novel treatments and for the design and success of future clinical trials. Associate Professor Adeel Razi is a NHMRC Investigator Fellow and CIFAR Azrieli Global Scholar at the Turner Institute of Brain and Mental Health, Monash University. He performs cross-disciplinary research combining engineering, physics, and machine-learning. Devon Stoliker is a PhD candidate at the Turner Institute for Brain and Mental Health, Monash University. His interest in consciousness and psychiatry has led him to investigate the neural mechanisms of classic psychedelic effects in the brain.
Psychedelics and the Pharmacology of Consciousness
The study of altered states of consciousness has long had the potential to provide important insight into the nature of consciousness. In recent years there has been a resurgence of research and public interest in atypical or altered states of consciousness. These have focused both on conditions in which consciousness is considered to be impaired due to brain trauma or enhanced in some way through mediation practices or ingestion of psychedelics. The talk will begin with a brief overview of recent scientific approaches to understanding these different types of altered consciousness. The remainder of the talk will focus on lab-based experiments conducted by myself and others looking at the effects of serotoninergic hallucinogens (i.e. psilocybin and LSD) on perceptual and cognitive function. Together this body of research provides important new insights for the scientific study of consciousness and an initial understanding of the neuropharmacological mechanisms underlying conscious experience.
The pharmacology of consciousness
My research uses a range of methods to better understand how the brain’s natural chemicals control complex behaviours, thoughts and perceptions. I also have a particular fascination about the factors that determine the contents of an individual’s conscious experience. In this talk I will present work that sits at the intersection of these two research areas looking at the role of different neurotransmitter systems in driving changes in conscious state. Specifically, I will discuss a series of studies using ambiguous stimuli to explore the neuropharmacological processes that underly alternations in perceptual awareness. By comparing different methods and neurotransmitter systems including: serotonin (psychedelics), noradrenaline (pupillometry) and Glutamate/GABA (Magnetic Resonance Spectroscopy MRS) we can start to tease apart the distinct role that different neurotransmitter systems play in coordinating conscious experience across time.
Psychedelics Enhance Performance on a Free Response Perceptual Integration Task
COSYNE 2025
Antidepressant-like effects of psychedelics in a chronic despair mouse model: Is the 5-HT2A receptor the unique player?
FENS Forum 2024
Differential effects of psychedelics and classical antidepressants on TrkB dimerization and neurotrophic signalling
FENS Forum 2024