Psychiatric Conditions
psychiatric conditions
Epigenomic (re)programming of the brain and behavior by ovarian hormones
Rhythmic changes in sex hormone levels across the ovarian cycle exert powerful effects on the brain and behavior, and confer female-specific risks for neuropsychiatric conditions. In this talk, Dr. Kundakovic will discuss the role of fluctuating ovarian hormones as a critical biological factor contributing to the increased depression and anxiety risk in women. Cycling ovarian hormones drive brain and behavioral plasticity in both humans and rodents, and the talk will focus on animal studies in Dr. Kundakovic’s lab that are revealing the molecular and receptor mechanisms that underlie this female-specific brain dynamic. She will highlight the lab’s discovery of sex hormone-driven epigenetic mechanisms, namely chromatin accessibility and 3D genome changes, that dynamically regulate neuronal gene expression and brain plasticity but may also prime the (epi)genome for psychopathology. She will then describe functional studies, including hormone replacement experiments and the overexpression of an estrous cycle stage-dependent transcription factor, which provide the causal link(s) between hormone-driven chromatin dynamics and sex-specific anxiety behavior. Dr. Kundakovic will also highlight an unconventional role that chromatin dynamics may have in regulating neuronal function across the ovarian cycle, including in sex hormone-driven X chromosome plasticity and hormonally-induced epigenetic priming. In summary, these studies provide a molecular framework to understand ovarian hormone-driven brain plasticity and increased female risk for anxiety and depression, opening new avenues for sex- and gender-informed treatments for brain disorders.
Can I be bothered? Neural and computational mechanisms underlying the dynamics of effort processing (BACN Early-career Prize Lecture 2021)
From a workout at the gym to helping a colleague with their work, everyday we make decisions about whether we are willing to exert effort to obtain some sort of benefit. Increases in how effortful actions and cognitive processes are perceived to be has been linked to clinically severe impairments to motivation, such as apathy and fatigue, across many neurological and psychiatric conditions. However, the vast majority of neuroscience research has focused on understanding the benefits for acting, the rewards, and not on the effort required. As a result, the computational and neural mechanisms underlying how effort is processed are poorly understood. How do we compute how effortful we perceive a task to be? How does this feed into our motivation and decisions of whether to act? How are such computations implemented in the brain? and how do they change in different environments? I will present a series of studies examining these questions using novel behavioural tasks, computational modelling, fMRI, pharmacological manipulations, and testing in a range of different populations. These studies highlight how the brain represents the costs of exerting effort, and the dynamic processes underlying how our sensitivity to effort changes as a function of our goals, traits, and socio-cognitive processes. This work provides new computational frameworks for understanding and examining impaired motivation across psychiatric and neurological conditions, as well as why all of us, sometimes, can’t be bothered.
Why is the suprachiasmatic nucleus such a brilliant circadian time-keeper?
Circadian clocks dominate our lives. By creating and distributing an internal representation of 24-hour solar time, they prepare us, and thereby adapt us, to the daily and seasonal world. Jet-lag is an obvious indicator of what can go wrong when such adaptation is disrupted acutely. More seriously, the growing prevalence of rotational shift-work which runs counter to our circadian life, is a significant chronic challenge to health, presenting as increased incidence of systemic conditions such as metabolic and cardiovascular disease. Added to this, circadian and sleep disturbances are a recognised feature of various neurological and psychiatric conditions, and in some cases may contribute to disease progression. The “head ganglion” of the circadian system is the suprachiasmatic nucleus (SCN) of the hypothalamus. It synchronises the, literally, innumerable cellular clocks across the body, to each other and to solar time. Isolated in organotypic slice culture, it can maintain precise, high-amplitude circadian cycles of neural activity, effectively, indefinitely, just as it does in vivo. How is this achieved: how does this clock in a dish work? This presentation will consider SCN time-keeping at the level of molecular feedback loops, neuropeptidergic networks and neuron-astrocyte interactions.
Sex, drugs, and bad choices: using rodent models to understand decision making
Nearly every aspect of life involves decisions between options that differ in both their expected rewards and the potential costs (such as delay to reward delivery or risk of harm) that accompany those rewards. The ability to choose adaptively when faced with such decisions is critical for well-being and overall quality of life. In neuropsychiatric conditions such as substance use disorders, however, decision making is often compromised, which can prolong and exacerbate their severity and co-morbidities. In this seminar, Dr. Setlow will discuss research in rodent models investigating behavioral and biological mechanisms of cost-benefit decision making. In particular, he will focus on factors (including sex) that contribute to differences in cost-benefit decision making across the population, how variability in decision making is related to substance use, and how substance use can produce long-lasting changes in decision preference.
Learning under uncertainty in autism and anxiety
Optimally interacting with a changeable and uncertain world requires estimating and representing uncertainty. Psychiatric and neurodevelopmental conditions such as anxiety and autism are characterized by an altered response to uncertainty. I will review the evidence for these phenomena from computational modelling, and outline the planned experiments from our lab to add further weight to these ideas. If time allows, I will present results from a control sample in a novel task interrogating a particular type of uncertainty and their associated transdiagnostic psychiatric traits.
Advances in Computational Psychiatry: Understanding (cognitive) control as a network process
The human brain is a complex organ characterized by heterogeneous patterns of interconnections. Non-invasive imaging techniques now allow for these patterns to be carefully and comprehensively mapped in individual humans, paving the way for a better understanding of how wiring supports cognitive processes. While a large body of work now focuses on descriptive statistics to characterize these wiring patterns, a critical open question lies in how the organization of these networks constrains the potential repertoire of brain dynamics. In this talk, I will describe an approach for understanding how perturbations to brain dynamics propagate through complex wiring patterns, driving the brain into new states of activity. Drawing on a range of disciplinary tools – from graph theory to network control theory and optimization – I will identify control points in brain networks and characterize trajectories of brain activity states following perturbation to those points. Finally, I will describe how these computational tools and approaches can be used to better understand the brain's intrinsic control mechanisms and their alterations in psychiatric conditions.