Pyramidal Cells
pyramidal cells
Neural circuits underlying sleep structure and functions
Sleep is an active state critical for processing emotional memories encoded during waking in both humans and animals. There is a remarkable overlap between the brain structures and circuits active during sleep, particularly rapid eye-movement (REM) sleep, and the those encoding emotions. Accordingly, disruptions in sleep quality or quantity, including REM sleep, are often associated with, and precede the onset of, nearly all affective psychiatric and mood disorders. In this context, a major biomedical challenge is to better understand the underlying mechanisms of the relationship between (REM) sleep and emotion encoding to improve treatments for mental health. This lecture will summarize our investigation of the cellular and circuit mechanisms underlying sleep architecture, sleep oscillations, and local brain dynamics across sleep-wake states using electrophysiological recordings combined with single-cell calcium imaging or optogenetics. The presentation will detail the discovery of a 'somato-dendritic decoupling'in prefrontal cortex pyramidal neurons underlying REM sleep-dependent stabilization of optimal emotional memory traces. This decoupling reflects a tonic inhibition at the somas of pyramidal cells, occurring simultaneously with a selective disinhibition of their dendritic arbors selectively during REM sleep. Recent findings on REM sleep-dependent subcortical inputs and neuromodulation of this decoupling will be discussed in the context of synaptic plasticity and the optimization of emotional responses in the maintenance of mental health.
Roles of inhibition in stabilizing and shaping the response of cortical networks
Inhibition has long been thought to stabilize the activity of cortical networks at low rates, and to shape significantly their response to sensory inputs. In this talk, I will describe three recent collaborative projects that shed light on these issues. (1) I will show how optogenetic excitation of inhibition neurons is consistent with cortex being inhibition stabilized even in the absence of sensory inputs, and how this data can constrain the coupling strengths of E-I cortical network models. (2) Recent analysis of the effects of optogenetic excitation of pyramidal cells in V1 of mice and monkeys shows that in some cases this optogenetic input reshuffles the firing rates of neurons of the network, leaving the distribution of rates unaffected. I will show how this surprising effect can be reproduced in sufficiently strongly coupled E-I networks. (3) Another puzzle has been to understand the respective roles of different inhibitory subtypes in network stabilization. Recent data reveal a novel, state dependent, paradoxical effect of weakening AMPAR mediated synaptic currents onto SST cells. Mathematical analysis of a network model with multiple inhibitory cell types shows that this effect tells us in which conditions SST cells are required for network stabilization.
Developmentally structured coactivity in the hippocampal trisynaptic loop
The hippocampus is a key player in learning and memory. Research into this brain structure has long emphasized its plasticity and flexibility, though recent reports have come to appreciate its remarkably stable firing patterns. How novel information incorporates itself into networks that maintain their ongoing dynamics remains an open question, largely due to a lack of experimental access points into network stability. Development may provide one such access point. To explore this hypothesis, we birthdated CA1 pyramidal neurons using in-utero electroporation and examined their functional features in freely moving, adult mice. We show that CA1 pyramidal neurons of the same embryonic birthdate exhibit prominent cofiring across different brain states, including behavior in the form of overlapping place fields. Spatial representations remapped across different environments in a manner that preserves the biased correlation patterns between same birthdate neurons. These features of CA1 activity could partially be explained by structured connectivity between pyramidal cells and local interneurons. These observations suggest the existence of developmentally installed circuit motifs that impose powerful constraints on the statistics of hippocampal output.
Chandelier cells shine a light on the emergence of GABAergic circuits in the cortex
GABAergic interneurons are chiefly responsible for controlling the activity of local circuits in the cortex. Chandelier cells (ChCs) are a type of GABAergic interneuron that control the output of hundreds of neighbouring pyramidal cells through axo-axonic synapses which target the axon initial segment (AIS). Despite their importance in modulating circuit activity, our knowledge of the development and function of axo-axonic synapses remains elusive. We have investigated the emergence and plasticity of axo-axonic synapses in layer 2/3 of the somatosensory cortex (S1) and found that ChCs follow what appear to be homeostatic rules when forming synapses with pyramidal neurons. We are currently implementing in vivo techniques to image the process of axo-axonic synapse formation during development and uncover the dynamics of synaptogenesis and pruning at the AIS. In addition, we are using an all-optical approach to both activate and measure the activity of chandelier cells and their postsynaptic partners in the primary visual cortex (V1) and somatosensory cortex (S1) in mice, also during development. We aim to provide a structural and functional description of the emergence and plasticity of a GABAergic synapse type in the cortex.
Extrinsic control and intrinsic computation in the hippocampal CA1 network
A key issue in understanding circuit operations is the extent to which neuronal spiking reflects local computation or responses to upstream inputs. Several studies have lesioned or silenced inputs to area CA1 of the hippocampus - either area CA3 or the entorhinal cortex and examined the effect on CA1 pyramidal cells. However, the types of the reported physiological impairments vary widely, primarily because simultaneous manipulations of these redundant inputs have never been performed. In this study, I combined optogenetic silencing of unilateral and bilateral mEC, of the local CA1 region, and performed bilateral pharmacogenetic silencing of CA3. I combined this with high spatial resolution extracellular recordings along the CA1-dentate axis. Silencing the medial entorhinal largely abolished extracellular theta and gamma currents in CA1, without affecting firing rates. In contrast, CA3 and local CA1 silencing strongly decreased firing of CA1 neurons without affecting theta currents. Each perturbation reconfigured the CA1 spatial map. Yet, the ability of the CA1 circuit to support place field activity persisted, maintaining the same fraction of spatially tuned place fields. In contrast to these results, unilateral mEC manipulations that were ineffective in impacting place cells during awake behavior were found to alter sharp-wave ripple sequences activated during sleep. Thus, intrinsic excitatory-inhibitory circuits within CA1 can generate neuronal assemblies in the absence of external inputs, although external synaptic inputs are critical to reconfigure (remap) neuronal assemblies in a brain-state dependent manner.
Extrinsic control and autonomous computation in the hippocampal CA1 circuit
In understanding circuit operations, a key issue is the extent to which neuronal spiking reflects local computation or responses to upstream inputs. Because pyramidal cells in CA1 do not have local recurrent projections, it is currently assumed that firing in CA1 is inherited from its inputs – thus, entorhinal inputs provide communication with the rest of the neocortex and the outside world, whereas CA3 inputs provide internal and past memory representations. Several studies have attempted to prove this hypothesis, by lesioning or silencing either area CA3 or the entorhinal cortex and examining the effect of firing on CA1 pyramidal cells. Despite the intense and careful work in this research area, the magnitudes and types of the reported physiological impairments vary widely across experiments. At least part of the existing variability and conflicts is due to the different behavioral paradigms, designs and evaluation methods used by different investigators. Simultaneous manipulations in the same animal or even separate manipulations of the different inputs to the hippocampal circuits in the same experiment are rare. To address these issues, I used optogenetic silencing of unilateral and bilateral mEC, of the local CA1 region, and performed bilateral pharmacogenetic silencing of the entire CA3 region. I combined this with high spatial resolution recording of local field potentials (LFP) in the CA1-dentate axis and simultaneously collected firing pattern data from thousands of single neurons. Each experimental animal had up to two of these manipulations being performed simultaneously. Silencing the medial entorhinal (mEC) largely abolished extracellular theta and gamma currents in CA1, without affecting firing rates. In contrast, CA3 and local CA1 silencing strongly decreased firing of CA1 neurons without affecting theta currents. Each perturbation reconfigured the CA1 spatial map. Yet, the ability of the CA1 circuit to support place field activity persisted, maintaining the same fraction of spatially tuned place fields, and reliable assembly expression as in the intact mouse. Thus, the CA1 network can maintain autonomous computation to support coordinated place cell assemblies without reliance on its inputs, yet these inputs can effectively reconfigure and assist in maintaining stability of the CA1 map.
A biological model system for studying predictive processing
Despite the increasing recognition of predictive processing in circuit neuroscience, little is known about how it may be implemented in cortical circuits. We set out to develop and characterise a biological model system with layer 5 pyramidal cells in the centre. We aim to gain access to prediction and internal model generating processes by controlling, understanding or monitoring everything else: the sensory environment, feed-forward and feed-back inputs, integrative properties, their spiking activity and output. I’ll show recent work from the lab establishing such a model system both in terms of biology as well as tool development.
Effects of pathological Tau on hippocampal neuronal activity and spatial memory in ageing mice
The gradual accumulation of hyperphosphorylated forms of the Tau protein (pTau) in the human brain correlate with cognitive dysfunction and neurodegeneration. I will present our recent findings on the consequences of human pTau aggregation in the hippocampal formation of a mouse tauopathy model. We show that pTau preferentially accumulates in deep-layer pyramidal neurons, leading to their neurodegeneration. In aged but not younger mice, pTau spreads to oligodendrocytes. During ‘goal-directed’ navigation, we detect fewer high-firing pyramidal cells, but coupling to network oscillations is maintained in the remaining cells. The firing patterns of individually recorded and labelled pyramidal and GABAergic neurons are similar in transgenic and non-transgenic mice, as are network oscillations, suggesting intact neuronal coordination. This is consistent with a lack of pTau in subcortical brain areas that provide rhythmic input to the cortex. Spatial memory tests reveal a reduction in short-term familiarity of spatial cues but unimpaired spatial working and reference memory. These results suggest that preserved subcortical network mechanisms compensate for the widespread pTau aggregation in the hippocampal formation. I will also briefly discuss ideas on the subcortical origins of spatial memory and the concept of the cortex as a monitoring device.
Diversification of cortical inhibitory circuits & Molecular programs orchestrating the wiring of inhibitory circuitries
GABAergic interneurons play crucial roles in the regulation of neural activity in the cerebral cortex. In this Dual Lecture, Prof Oscar Marín and Prof Beatriz Rico will discuss several aspects of the formation of inhibitory circuits in the mammalian cerebral cortex. Prof. Marín will provide an overview of the mechanisms regulating the generation of the remarkable diversity of GABAergic interneurons and their ultimate numbers. Prof. Rico will describe the molecular logic through which specific pyramidal cell-interneuron circuits are established in the cerebral cortex, and how alterations in some of these connectivity motifs might be liked to disease. Our web pages for reference: https://devneuro.org.uk/marinlab/ & https://devneuro.org.uk/rico/default
Network mechanisms underlying representational drift in area CA1 of hippocampus
Recent chronic imaging experiments in mice have revealed that the hippocampal code exhibits non-trivial turnover dynamics over long time scales. Specifically, the subset of cells which are active on any given session in a familiar environment changes over the course of days and weeks. While some cells transition into or out of the code after a few sessions, others are stable over the entire experiment. The mechanisms underlying this turnover are unknown. Here we show that the statistics of turnover are consistent with a model in which non-spatial inputs to CA1 pyramidal cells readily undergo plasticity, while spatially tuned inputs are largely stable over time. The heterogeneity in stability across the cell assembly, as well as the decrease in correlation of the population vector of activity over time, are both quantitatively fit by a simple model with Gaussian input statistics. In fact, such input statistics emerge naturally in a network of spiking neurons operating in the fluctuation-driven regime. This correspondence allows one to map the parameters of a large-scale spiking network model of CA1 onto the simple statistical model, and thereby fit the experimental data quantitatively. Importantly, we show that the observed drift is entirely consistent with random, ongoing synaptic turnover. This synaptic turnover is, in turn, consistent with Hebbian plasticity related to continuous learning in a fast memory system.
The GluN2A Subunit of the NMDA Receptor and Parvalbumin Interneurons: A Possible Role in Interneuron Development
N-methyl-D-aspartate receptors (NMDARs) are excitatory glutamate-gated ion channels that are expressed throughout the central nervous system. NMDARs mediate calcium entry into cells, and are involved in a host of neurological functions. The GluN2A subunit, encoded by the GRIN2A gene, is expressed by both excitatory and inhibitory neurons, with well described roles in pyramidal cells. By using Grin2a knockout mice, we show that the loss of GluN2A signaling impacts parvalbumin-positive (PV) GABAergic interneuron function in hippocampus. Grin2a knockout mice have 33% more PV cells in CA1 compared to wild type but similar cholecystokinin-positive cell density. Immunohistochemistry and electrophysiological recordings show that excess PV cells do eventually incorporate into the hippocampal network and participate in phasic inhibition. Although the morphology of Grin2a knockout PV cells is unaffected, excitability and action-potential firing properties show age-dependent alterations. Preadolescent (P20-25) PV cells have an increased input resistance, longer membrane time constant, longer action-potential half-width, a lower current threshold for depolarization-induced block of action-potential firing, and a decrease in peak action-potential firing rate. Each of these measures are corrected in adulthood, reaching wild type levels, suggesting a potential delay of electrophysiological maturation. The circuit and behavioral implications of this age-dependent PV interneuron malfunction are unknown. However, neonatal Grin2a knockout mice are more susceptible to lipopolysaccharide and febrile-induced seizures, consistent with a critical role for early GluN2A signaling in development and maintenance of excitatory-inhibitory balance. These results could provide insights into how loss-of-function GRIN2A human variants generate an epileptic phenotypes.
NMC4 Short Talk: Novel population of synchronously active pyramidal cells in hippocampal area CA1
Hippocampal pyramidal cells have been widely studied during locomotion, when theta oscillations are present, and during short wave ripples at rest, when replay takes place. However, we find a subset of pyramidal cells that are preferably active during rest, in the absence of theta oscillations and short wave ripples. We recorded these cells using two-photon imaging in dorsal CA1 of the hippocampus of mice, during a virtual reality object location recognition task. During locomotion, the cells show a similar level of activity as control cells, but their activity increases during rest, when this population of cells shows highly synchronous, oscillatory activity at a low frequency (0.1-0.4 Hz). In addition, during both locomotion and rest these cells show place coding, suggesting they may play a role in maintaining a representation of the current location, even when the animal is not moving. We performed simultaneous electrophysiological and calcium recordings, which showed a higher correlation of activity between the LFO and the hippocampal cells in the 0.1-0.4 Hz low frequency band during rest than during locomotion. However, the relationship between the LFO and calcium signals varied between electrodes, suggesting a localized effect. We used the Allen Brain Observatory Neuropixels Visual Coding dataset to further explore this. These data revealed localised low frequency oscillations in CA1 and DG during rest. Overall, we show a novel population of hippocampal cells, and a novel oscillatory band of activity in hippocampus during rest.
NMC4 Short Talk: Resilience through diversity: Loss of neuronal heterogeneity in epileptogenic human tissue impairs network resilience to sudden changes in synchrony
A myriad of pathological changes associated with epilepsy, including the loss of specific cell types, improper expression of individual ion channels, and synaptic sprouting, can be recast as decreases in cell and circuit heterogeneity. In recent experimental work, we demonstrated that biophysical diversity is a key characteristic of human cortical pyramidal cells, and past theoretical work has shown that neuronal heterogeneity improves a neural circuit’s ability to encode information. Viewed alongside the fact that seizure is an information-poor brain state, these findings motivate the hypothesis that epileptogenesis can be recontextualized as a process where reduction in cellular heterogeneity renders neural circuits less resilient to seizure onset. By comparing whole-cell patch clamp recordings from layer 5 (L5) human cortical pyramidal neurons from epileptogenic and non-epileptogenic tissue, we present the first direct experimental evidence that a significant reduction in neural heterogeneity accompanies epilepsy. We directly implement experimentally-obtained heterogeneity levels in cortical excitatory-inhibitory (E-I) stochastic spiking network models. Low heterogeneity networks display unique dynamics typified by a sudden transition into a hyper-active and synchronous state paralleling ictogenesis. Mean-field analysis reveals a distinct mathematical structure in these networks distinguished by multi-stability. Furthermore, the mathematically characterized linearizing effect of heterogeneity on input-output response functions explains the counter-intuitive experimentally observed reduction in single-cell excitability in epileptogenic neurons. This joint experimental, computational, and mathematical study showcases that decreased neuronal heterogeneity exists in epileptogenic human cortical tissue, that this difference yields dynamical changes in neural networks paralleling ictogenesis, and that there is a fundamental explanation for these dynamics based in mathematically characterized effects of heterogeneity. These interdisciplinary results provide convincing evidence that biophysical diversity imbues neural circuits with resilience to seizure and a new lens through which to view epilepsy, the most common serious neurological disorder in the world, that could reveal new targets for clinical treatment.
Dual lecture: Diversification of cortical inhibitory circuits & Molecular programs orchestrating the wiring of inhibitory circuitries
GABAergic interneurons play crucial roles in the regulation of neural activity in the cerebral cortex. In this Dual Lecture, Prof Oscar Marín and Prof Beatriz Rico will discuss several aspects of the formation of inhibitory circuits in the mammalian cerebral cortex. Prof. Marín will provide an overview of the mechanisms regulating the generation of the remarkable diversity of GABAergic interneurons and their ultimate numbers. Prof. Rico will describe the molecular logic through which specific pyramidal cell-interneuron circuits are established in the cerebral cortex, and how alterations in some of these connectivity motifs might be liked to disease.
Optimising spiking interneuron circuits for compartment-specific feedback
Cortical circuits process information by rich recurrent interactions between excitatory neurons and inhibitory interneurons. One of the prime functions of interneurons is to stabilize the circuit by feedback inhibition, but the level of specificity on which inhibitory feedback operates is not fully resolved. We hypothesized that inhibitory circuits could enable separate feedback control loops for different synaptic input streams, by means of specific feedback inhibition to different neuronal compartments. To investigate this hypothesis, we adopted an optimization approach. Leveraging recent advances in training spiking network models, we optimized the connectivity and short-term plasticity of interneuron circuits for compartment-specific feedback inhibition onto pyramidal neurons. Over the course of the optimization, the interneurons diversified into two classes that resembled parvalbumin (PV) and somatostatin (SST) expressing interneurons. The resulting circuit can be understood as a neural decoder that inverts the nonlinear biophysical computations performed within the pyramidal cells. Our model provides a proof of concept for studying structure-function relations in cortical circuits by a combination of gradient-based optimization and biologically plausible phenomenological models
Disinhibitory and neuromodulatory regulation of hippocampal synaptic plasticity
The CA1 pyramidal neurons are embedded in an intricate local circuitry that contains a variety of interneurons. The roles these interneurons play in the regulation of the excitatory synaptic plasticity remains largely understudied. Recent experiments showed that repeated cholinergic activation of 𝛼7 nACh receptors expressed in oriens-lacunosum-moleculare (OLM𝛼2) interneurons could induce LTP in SC-CA1 synapses. We used a biophysically realistic computational model to examine mechanistically how cholinergic activation of OLMa2 interneurons increases SC to CA1 transmission. Our results suggest that, when properly timed, activation of OLMa2 interneurons cancels the feedforward inhibition onto CA1 pyramidal cells by inhibiting fast-spiking interneurons that synapse on the same dendritic compartment as the SC, i.e., by disinhibiting the pyramidal cell dendritic compartment. Our work further describes the pairing of disinhibition with SC stimulation as a general mechanism for the induction of synaptic plasticity. We found that locally-reduced GABA release (disinhibition) paired with SC stimulation could lead to increased NMDAR activation and intracellular calcium concentration sufficient to upregulate AMPAR permeability and potentiate the excitatory synapse. Our work suggests that inhibitory synapses critically modulate excitatory neurotransmission and induction of plasticity at excitatory synapses. Our work also shows how cholinergic action on OLM interneurons, a mechanism whose disruption is associated with memory impairment, can down-regulate the GABAergic signaling into CA1 pyramidal cells and facilitate potentiation of the SC-CA1 synapse.
Data-driven reduction of dendritic morphologies with preserved dendro-somatic responses
There is little consensus on the level of spatial complexity at which dendrites operate. On the one hand, emergent evidence indicates that synapses cluster at micrometer spatial scales. On the other hand, most modelling and network studies ignore dendrites altogether. This dichotomy raises an urgent question: what is the smallest relevant spatial scale for understanding dendritic computation? We have developed a method to construct compartmental models at any level of spatial complexity. Through carefully chosen parameter fits, solvable in the least-squares sense, we obtain accurate reduced compartmental models. Thus, we are able to systematically construct passive as well as active dendrite models at varying degrees of spatial complexity. We evaluate which elements of the dendritic computational repertoire are captured by these models. We show that many canonical elements of the dendritic computational repertoire can be reproduced with few compartments. For instance, for a model to behave as a two-layer network, it is sufficient to fit a reduced model at the soma and at locations at the dendritic tips. In the basal dendrites of an L2/3 pyramidal model, we reproduce the backpropagation of somatic action potentials (APs) with a single dendritic compartment at the tip. Further, we obtain the well-known Ca-spike coincidence detection mechanism in L5 Pyramidal cells with as few as eleven compartments, the requirement being that their spacing along the apical trunk supports AP backpropagation. We also investigate whether afferent spatial connectivity motifs admit simplification by ablating targeted branches and grouping affected synapses onto the next proximal dendrite. We find that voltage in the remaining branches is reproduced if temporal conductance fluctuations stay below a limit that depends on the average difference in input resistance between the ablated branches and the next proximal dendrite. Consequently, when the average conductance load on distal synapses is constant, the dendritic tree can be simplified while appropriately decreasing synaptic weights. When the conductance level fluctuates strongly, for instance through a-priori unpredictable fluctuations in NMDA activation, a constant weight rescale factor cannot be found, and the dendrite cannot be simplified. We have created an open source Python toolbox (NEAT - https://neatdend.readthedocs.io/en/latest/) that automatises the simplification process. A NEST implementation of the reduced models, currently under construction, will enable the simulation of few-compartment models in large-scale networks, thus bridging the gap between cellular and network level neuroscience.
Error correction and reliability timescale in converging cortical networks
Rapidly changing inputs such as visual scenes and auditory landscapes are transmitted over several synaptic interfaces and perceived with little loss of detail, but individual neurons are typically “noisy” and cortico-cortical connections are typically “weak”. To understand how information embodied in spike train is transmitted in a lossless manner, we focus on a single synaptic interface: between pyramidal cells and putative interneurons. Using arbitrary white noise patterns injected intra-cortically as photocurrents to freely-moving mice, we find that directly-activated cells exhibit precision of several milliseconds, but post-synaptic, indirectly-activated cells exhibit higher precision. Considering multiple identical messages, the reliability of directly-activated cells peaks at a timescale of dozens of milliseconds, whereas indirectly-activated cells exhibit an order-of-magnitude faster timescale. Using data-driven modelling, we find that error correction is consistent with non-linear amplification of coincident spikes.
Cortical interneuron wiring in health and disease
The establishment of synaptic connections is essential for normal brain function, yet the molecular mechanisms responsible for the precise connectivity of specific neural circuits remain largely unknown. Previous work has shown that the assembly of cortical circuits requires specific functions of molecular signalling complexes at different classes of synapses. In this talk, I will describe the molecular logic through which specific pyramidal cell-interneuron circuits are established in the cerebral cortex of the mouse, and how alterations in some of these connectivity motifs might be liked to disease.
Using evolutionary algorithms to explore single-cell heterogeneity and microcircuit operation in the hippocampus
The hippocampus-entorhinal system is critical for learning and memory. Recent cutting-edge single-cell technologies from RNAseq to electrophysiology are disclosing a so far unrecognized heterogeneity within the major cell types (1). Surprisingly, massive high-throughput recordings of these very same cells identify low dimensional microcircuit dynamics (2,3). Reconciling both views is critical to understand how the brain operates. " "The CA1 region is considered high in the hierarchy of the entorhinal-hippocampal system. Traditionally viewed as a single layered structure, recent evidence has disclosed an exquisite laminar organization across deep and superficial pyramidal sublayers at the transcriptional, morphological and functional levels (1,4,5). Such a low-dimensional segregation may be driven by a combination of intrinsic, biophysical and microcircuit factors but mechanisms are unknown." "Here, we exploit evolutionary algorithms to address the effect of single-cell heterogeneity on CA1 pyramidal cell activity (6). First, we developed a biophysically realistic model of CA1 pyramidal cells using the Hodgkin-Huxley multi-compartment formalism in the Neuron+Python platform and the morphological database Neuromorpho.org. We adopted genetic algorithms (GA) to identify passive, active and synaptic conductances resulting in realistic electrophysiological behavior. We then used the generated models to explore the functional effect of intrinsic, synaptic and morphological heterogeneity during oscillatory activities. By combining results from all simulations in a logistic regression model we evaluated the effect of up/down-regulation of different factors. We found that muyltidimensional excitatory and inhibitory inputs interact with morphological and intrinsic factors to determine a low dimensional subset of output features (e.g. phase-locking preference) that matches non-fitted experimental data.
Modeling HCN Channel-Mediated Modulation on Dendro-Somatic Electric Coupling in CA1 Pyramidal Cells
Bernstein Conference 2024
Anatomically heterogeneous pyramidal cells in supragranular layers of the dorsal cortex show the surface-to-deep firing frequency increase during natural sleep
FENS Forum 2024
Contrasting the role of excitatory pyramidal cells and GABAergic interneurons in prefrontal cortex through a novel contextual auditory stimulus task paradigm and calcium imaging
FENS Forum 2024
Interhemispheric synaptic inputs to neocortical pyramidal cells with dendritic versus somatic axon origin
FENS Forum 2024
Intrinsic biophysical properties and extrinsic spatial experience collaboratively prime CA1 pyramidal cells to replay during sharp-wave ripples
FENS Forum 2024
Investigating the role of pyramidal cells in the neurovascular uncoupling of Alzheimer's disease
FENS Forum 2024
Optical recording of unitary synaptic connections between CA3 pyramidal cells using Voltron imaging
FENS Forum 2024
Regulation of microglia development and function by pyramidal cells
FENS Forum 2024