← Back

Qualia

Topic spotlight
TopicWorld Wide

qualia

Discover seminars, jobs, and research tagged with qualia across World Wide.
3 curated items3 Seminars
Updated about 4 years ago
3 items · qualia
3 results
SeminarNeuroscienceRecording

Qualitative Structure, Automorphism Groups and Private Language

Johannes Kleiner
Ludwig Maximilian University
Nov 3, 2021

It is generally agreed upon that qualities of conscious experience instantiate structural properties, usually called relations. They furnish a representation of qualities (or qualia, in fact) in terms of a mathematical space Q (rather than a set), which is crucial to both modelling and measuring of conscious experience." "What is usually disregarded is that “only such structural properties generalize across individuals” (Austen Clark), but that qualities themselves as differentiated by stimulus specifications, behavior or reports do not. We show that this implies that only the part of Q which is invariant with respect to the automorphism group has a well-defined referent, while individual elements do not. This poses a prima facie limitation of any theory or experiment that aims to address individual qualities. We show how mathematical theories of consciousness can overcome this limitation via symmetry groups and group actions, making accessible to science what is properly called private language.

SeminarNeuroscienceRecording

Can subjective experience be quantified? Critically examining computational cognitive neuroscience approaches

Megan Peters
UC Irvine
Nov 5, 2020

Computational and cognitive neuroscience techniques have made great strides towards describing the neural computations underlying perceptual inference and decision-making under uncertainty. These tools tell us how and why perceptual illusions occur, which brain areas may represent noisy information in a probabilistic manner, and so on. However, an understanding of the subjective, qualitative aspects of perception remains elusive: qualia, or the personal, intrinsic properties of phenomenal awareness, have remained out of reach of these computational analytic insights. Here, I propose that metacognitive computations, and the subjective feelings that go along with them, give us a solid starting point for understanding subjective experience in general. Specifically, perceptual metacognition possesses ontological and practical properties that provide a powerful and unique opportunity for studying the studying the neural and computational correlates of subjective experience using established tools of computational and cognitive neuroscience. By capitalizing on decades of developments in formal computational model comparisons as applied to the specific properties of perceptual metacognition, we are now in a privileged position to reveal new and exciting insights about how the brain constructs our subjective conscious experiences.