Receptive Fields
receptive fields
Orientation selectivity in rodent V1: theory vs experiments
Neurons in the primary visual cortex (V1) of rodents are selective to the orientation of the stimulus, as in other mammals such as cats and monkeys. However, in contrast with those species, their neurons display a very different type of spatial organization. Instead of orientation maps they are organized in a “salt and pepper” pattern, where adjacent neurons have completely different preferred orientations. This structure has motivated both experimental and theoretical research with the objective of determining which aspects of the connectivity patterns and intrinsic neuronal responses can explain the observed behavior. These analysis have to take into account also that the neurons of the thalamus that send their outputs to the cortex have more complex responses in rodents than in higher mammals, displaying, for instance, a significant degree of orientation selectivity. In this talk we present work showing that a random feed-forward connectivity pattern, in which the probability of having a connection between a cortical neuron and a thalamic neuron depends only on the relative distance between them is enough explain several aspects of the complex phenomenology found in these systems. Moreover, this approach allows us to evaluate analytically the statistical structure of the thalamic input on the cortex. We find that V1 neurons are orientation selective but the preferred orientation of the stimulus depends on the spatial frequency of the stimulus. We disentangle the effect of the non circular thalamic receptive fields, finding that they control the selectivity of the time-averaged thalamic input, but not the selectivity of the time locked component. We also compare with experiments that use reverse correlation techniques, showing that ON and OFF components of the aggregate thalamic input are spatially segregated in the cortex.
Convex neural codes in recurrent networks and sensory systems
Neural activity in many sensory systems is organized on low-dimensional manifolds by means of convex receptive fields. Neural codes in these areas are constrained by this organization, as not every neural code is compatible with convex receptive fields. The same codes are also constrained by the structure of the underlying neural network. In my talk I will attempt to provide answers to the following natural questions: (i) How do recurrent circuits generate codes that are compatible with the convexity of receptive fields? (ii) How can we utilize the constraints imposed by the convex receptive field to understand the underlying stimulus space. To answer question (i), we describe the combinatorics of the steady states and fixed points of recurrent networks that satisfy the Dale’s law. It turns out the combinatorics of the fixed points are completely determined by two distinct conditions: (a) the connectivity graph of the network and (b) a spectral condition on the synaptic matrix. We give a characterization of exactly which features of connectivity determine the combinatorics of the fixed points. We also find that a generic recurrent network that satisfies Dale's law outputs convex combinatorial codes. To address question (ii), I will describe methods based on ideas from topology and geometry that take advantage of the convex receptive field properties to infer the dimension of (non-linear) neural representations. I will illustrate the first method by inferring basic features of the neural representations in the mouse olfactory bulb.
Intrinsic Geometry of a Combinatorial Sensory Neural Code for Birdsong
Understanding the nature of neural representation is a central challenge of neuroscience. One common approach to this challenge is to compute receptive fields by correlating neural activity with external variables drawn from sensory signals. But these receptive fields are only meaningful to the experimenter, not the organism, because only the experimenter has access to both the neural activity and knowledge of the external variables. To understand neural representation more directly, recent methodological advances have sought to capture the intrinsic geometry of sensory driven neural responses without external reference. To date, this approach has largely been restricted to low-dimensional stimuli as in spatial navigation. In this talk, I will discuss recent work from my lab examining the intrinsic geometry of sensory representations in a model vocal communication system, songbirds. From the assumption that sensory systems capture invariant relationships among stimulus features, we conceptualized the space of natural birdsongs to lie on the surface of an n-dimensional hypersphere. We computed composite receptive field models for large populations of simultaneously recorded single neurons in the auditory forebrain and show that solutions to these models define convex regions of response probability in the spherical stimulus space. We then define a combinatorial code over the set of receptive fields, realized in the moment-to-moment spiking and non-spiking patterns across the population, and show that this code can be used to reconstruct high-fidelity spectrographic representations of natural songs from evoked neural responses. Notably, we find that topological relationships among combinatorial codewords directly mirror acoustic relationships among songs in the spherical stimulus space. That is, the time-varying pattern of co-activity across the neural population expresses an intrinsic representational geometry that mirrors the natural, extrinsic stimulus space. Combinatorial patterns across this intrinsic space directly represent complex vocal communication signals, do not require computation of receptive fields, and are in a form, spike time coincidences, amenable to biophysical mechanisms of neural information propagation.
Time as a continuous dimension in natural and artificial networks
Neural representations of time are central to our understanding of the world around us. I review cognitive, neurophysiological and theoretical work that converges on three simple ideas. First, the time of past events is remembered via populations of neurons with a continuum of functional time constants. Second, these time constants evenly tile the log time axis. This results in a neural Weber-Fechner scale for time which can support behavioral Weber-Fechner laws and characteristic behavioral effects in memory experiments. Third, these populations appear as dual pairs---one type of population contains cells that change firing rate monotonically over time and a second type of population that has circumscribed temporal receptive fields. These ideas can be used to build artificial neural networks that have novel properties. Of particular interest, a convolutional neural network built using these principles can generalize to arbitrary rescaling of its inputs. That is, after learning to perform a classification task on a time series presented at one speed, it successfully classifies stimuli presented slowed down or sped up. This result illustrates the point that this confluence of ideas originating in cognitive psychology and measured in the mammalian brain could have wide-reaching impacts on AI research.
A Panoramic View on Vision
Statistics of natural scenes are not uniform - their structure varies dramatically from ground to sky. It remains unknown whether these non-uniformities are reflected in the large-scale organization of the early visual system and what benefits such adaptations would confer. By deploying an efficient coding argument, we predict that changes in the structure of receptive fields across visual space increase the efficiency of sensory coding. To test this experimentally, developed a simple, novel imaging system that is indispensable for studies at this scale. In agreement with our predictions, we could show that receptive fields of retinal ganglion cells change their shape along the dorsoventral axis, with a marked surround asymmetry at the visual horizon. Our work demonstrates that, according to principles of efficient coding, the panoramic structure of natural scenes is exploited by the retina across space and cell-types.
Hearing in an acoustically varied world
In order for animals to thrive in their complex environments, their sensory systems must form representations of objects that are invariant to changes in some dimensions of their physical cues. For example, we can recognize a friend’s speech in a forest, a small office, and a cathedral, even though the sound reaching our ears will be very different in these three environments. I will discuss our recent experiments into how neurons in auditory cortex can form stable representations of sounds in this acoustically varied world. We began by using a normative computational model of hearing to examine how the brain may recognize a sound source across rooms with different levels of reverberation. The model predicted that reverberations can be removed from the original sound by delaying the inhibitory component of spectrotemporal receptive fields in the presence of stronger reverberation. Our electrophysiological recordings then confirmed that neurons in ferret auditory cortex apply this algorithm to adapt to different room sizes. Our results demonstrate that this neural process is dynamic and adaptive. These studies provide new insights into how we can recognize auditory objects even in highly reverberant environments, and direct further research questions about how reverb adaptation is implemented in the cortical circuit.
Space wrapped onto a grid cell torus
Entorhinal grid cells, so-called because of their hexagonally tiled spatial receptive fields, are organized in modules which, collectively, are believed to form a population code for the animal’s position. Here, we apply topological data analysis to simultaneous recordings of hundreds of grid cells and show that joint activity of grid cells within a module lies on a toroidal manifold. Each position of the animal in its physical environment corresponds to a single location on the torus, and each grid cell is preferentially active within a single “field” on the torus. Toroidal firing positions persist between environments, and between wakefulness and sleep, in agreement with continuous attractor models of grid cells.
The role of motion in localizing objects
Everything we see has a location. We know where things are before we know what they are. But how do we know where things are? Receptive fields in the visual system specify location but neural delays lead to serious errors whenever targets or eyes are moving. Motion may be the problem here but motion can also be the solution, correcting for the effects of delays and eye movements. To demonstrate this, I will present results from three motion illusions where perceived location differs radically from physical location. These help understand how and where position is coded. We first look at the effects of a target’s simple forward motion on its perceived location. Second, we look at perceived location of a target that has internal motion as well as forward motion. The two directions combine to produce an illusory path. This “double-drift” illusion strongly affects perceived position but, surprisingly, not eye movements or attention. Even more surprising, fMRI shows that the shifted percept does not emerge in the visual cortex but is seen instead in the frontal lobes. Finally, we report that a moving frame also shifts the perceived positions of dots flashed within it. Participants report the dot positions relative to the frame, as if the frame were not moving. These frame-induced position effects suggest a link to visual stability where we see a steady world despite massive displacements during saccades. These motion-based effects on perceived location lead to new insights concerning how and where position is coded in the brain.
Novel Object Detection and Multiplexed Motion Representation in Retinal Bipolar Cells
Detection of motion is essential for survival, but how the visual system processes moving stimuli is not fully understood. Here, based on a detailed analysis of glutamate release from bipolar cells, we outline the rules that govern the representation of object motion in the early processing stages. Our main findings are as follows: (1) Motion processing begins already at the first retinal synapse. (2) The shape and the amplitude of motion responses cannot be reliably predicted from bipolar cell responses to stationary objects. (3) Enhanced representation of novel objects - particularly in bipolar cells with transient dynamics. (4) Response amplitude in bipolar cells matches visual salience reported in humans: suddenly appearing objects > novel motion > existing motion. These findings can be explained by antagonistic interactions in the center-surround receptive field, demonstrate that despite their simple operational concepts, classical center-surround receptive fields enable sophisticated visual computations.
Efficient coding and receptive field coordination in the retina
My laboratory studies how the retina processes visual scenes and transmits this information to the brain. We use multi-electrode arrays to record the activity of hundreds of retina neurons simultaneously in conjunction with transgenic mouse lines and chemogenetics to manipulate neural circuit function. We are interested in three major areas. First, we work to understand how neurons in the retina are functionally connected. Second we are studying how light-adaptation and circadian rhythms alter visual processing in the retina. Finally, we are working to understand the mechanisms of retinal degenerative conditions and we are investigating potential treatments in animal models.
A fresh look at the bird retina
I am working on the vertebrate retina, with a main focus on the mouse and bird retina. Currently my work is focused on three major topics: Functional and molecular analysis of electrical synapses in the retina Circuitry and functional role of retinal interneurons: horizontal cells Circuitry for light-dependent magnetoreception in the bird retina Electrical synapses Electrical synapses (gap junctions) permit fast transmission of electrical signals and passage of metabolites by means of channels, which directly connect the cytoplasm of adjoining cells. A functional gap junction channel consists of two hemichannels (one provided by each of the cells), each comprised of a set of six protein subunits, termed connexins. These building blocks exist in a variety of different subtypes, and the connexin composition determines permeability and gating properties of a gap junction channel, thereby enabling electrical synapses to meet a diversity of physiological requirements. In the retina, various connexins are expressed in different cell types. We study the cellular distribution of different connexins as well as the modulation induced by transmitter action or change of ambient light levels, which leads to altered electrical coupling properties. We are also interested in exploiting them as therapeutic avenue for retinal degeneration diseases. Horizontal cells Horizontal cells receive excitatory input from photoreceptors and provide feedback inhibition to photoreceptors and feedforward inhibition to bipolar cells. Because of strong electrical coupling horizontal cells integrate the photoreceptor input over a wide area and are thought to contribute to the antagonistic organization of bipolar cell and ganglion cell receptive fields and to tune the photoreceptor–bipolar cell synapse with respect to the ambient light conditions. However, the extent to which this influence shapes retinal output is unclear, and we aim to elucidate the functional importance of horizontal cells for retinal signal processing by studying various transgenic mouse models. Retinal circuitry for light-dependent magnetoreception in the bird We are studying which neuronal cell types and pathways in the bird retina are involved in the processing of magnetic signals. Likely, magnetic information is detected in cryptochrome-expressing photoreceptors and leaves the retina through ganglion cell axons that project via the thalamofugal pathway to Cluster N, a part of the visual wulst essential for the avian magnetic compass. Thus, we aim to elucidate the synaptic connections and retinal signaling pathways from putatively magnetosensitive photoreceptors to thalamus-projecting ganglion cells in migratory birds using neuroanatomical and electrophysiological techniques.
A theory for Hebbian learning in recurrent E-I networks
The Stabilized Supralinear Network is a model of recurrently connected excitatory (E) and inhibitory (I) neurons with a supralinear input-output relation. It can explain cortical computations such as response normalization and inhibitory stabilization. However, the network's connectivity is designed by hand, based on experimental measurements. How the recurrent synaptic weights can be learned from the sensory input statistics in a biologically plausible way is unknown. Earlier theoretical work on plasticity focused on single neurons and the balance of excitation and inhibition but did not consider the simultaneous plasticity of recurrent synapses and the formation of receptive fields. Here we present a recurrent E-I network model where all synaptic connections are simultaneously plastic, and E neurons self-stabilize by recruiting co-tuned inhibition. Motivated by experimental results, we employ a local Hebbian plasticity rule with multiplicative normalization for E and I synapses. We develop a theoretical framework that explains how plasticity enables inhibition balanced excitatory receptive fields that match experimental results. We show analytically that sufficiently strong inhibition allows neurons' receptive fields to decorrelate and distribute themselves across the stimulus space. For strong recurrent excitation, the network becomes stabilized by inhibition, which prevents unconstrained self-excitation. In this regime, external inputs integrate sublinearly. As in the Stabilized Supralinear Network, this results in response normalization and winner-takes-all dynamics: when two competing stimuli are presented, the network response is dominated by the stronger stimulus while the weaker stimulus is suppressed. In summary, we present a biologically plausible theoretical framework to model plasticity in fully plastic recurrent E-I networks. While the connectivity is derived from the sensory input statistics, the circuit performs meaningful computations. Our work provides a mathematical framework of plasticity in recurrent networks, which has previously only been studied numerically and can serve as the basis for a new generation of brain-inspired unsupervised machine learning algorithms.
Neural mechanisms of active vision in the marmoset monkey
Human vision relies on rapid eye movements (saccades) 2-3 times every second to bring peripheral targets to central foveal vision for high resolution inspection. This rapid sampling of the world defines the perception-action cycle of natural vision and profoundly impacts our perception. Marmosets have similar visual processing and eye movements as humans, including a fovea that supports high-acuity central vision. Here, I present a novel approach developed in my laboratory for investigating the neural mechanisms of visual processing using naturalistic free viewing and simple target foraging paradigms. First, we establish that it is possible to map receptive fields in the marmoset with high precision in visual areas V1 and MT without constraints on fixation of the eyes. Instead, we use an off-line correction for eye position during foraging combined with high resolution eye tracking. This approach allows us to simultaneously map receptive fields, even at the precision of foveal V1 neurons, while also assessing the impact of eye movements on the visual information encoded. We find that the visual information encoded by neurons varies dramatically across the saccade to fixation cycle, with most information localized to brief post-saccadic transients. In a second study we examined if target selection prior to saccades can predictively influence how foveal visual information is subsequently processed in post-saccadic transients. Because every saccade brings a target to the fovea for detailed inspection, we hypothesized that predictive mechanisms might prime foveal populations to process the target. Using neural decoding from laminar arrays placed in foveal regions of area MT, we find that the direction of motion for a fixated target can be predictively read out from foveal activity even before its post-saccadic arrival. These findings highlight the dynamic and predictive nature of visual processing during eye movements and the utility of the marmoset as a model of active vision. Funding sources: NIH EY030998 to JM, Life Sciences Fellowship to JY
The properties of large receptive fields as explanation of ensemble statistical representation: A population coding model
no
Motion processing across visual field locations in zebrafish
Animals are able to perceive self-motion and navigate in their environment using optic flow information. They often perform visually guided stabilization behaviors like the optokinetic (OKR) or optomotor response (OMR) in order to maintain their eye and body position relative to the moving surround. But how does the animal manage to perform appropriate behavioral response and how are processing tasks divided between the various non-cortical visual brain areas? Experiments have shown that the zebrafish pretectum, which is homologous to the mammalian accessory optic system, is involved in the OKR and OMR. The optic tectum (superior colliculus in mammals) is involved in processing of small stimuli, e.g. during prey capture. We have previously shown that many pretectal neurons respond selectively to rotational or translational motion. These neurons are likely detectors for specific optic flow patterns and mediate behavioral choices of the animal based on optic flow information. We investigate the motion feature extraction of brain structures that receive input from retinal ganglion cells to identify the visual computations that underlie behavioral decisions during prey capture, OKR, OMR and other visually mediate behaviors. Our study of receptive fields shows that receptive field sizes in pretectum (large) and tectum (small) are very different and that pretectal responses are diverse and anatomically organized. Since calcium indicators are slow and receptive fields for motion stimuli are difficult to measure, we also develop novel stimuli and statistical methods to infer the neuronal computations of visual brain areas.
Cholinergic regulation of learning in the olfactory system
In the olfactory system, cholinergic modulation has been associated with contrast modulation and changes in receptive fields in the olfactory bulb, as well the learning of odor associations in the olfactory cortex. Computational modeling and behavioral studies suggest that cholinergic modulation could improve sensory processing and learning while preventing pro-active interference when task demands are high. However, how sensory inputs and/or learning regulate incoming modulation has not yet been elucidated. We here use a computational model of the olfactory bulb, piriform cortex (PC) and horizontal limb of the diagonal band of Broca (HDB) to explore how olfactory learning could regulate cholinergic inputs to the system in a closed feedback loop. In our model, the novelty of an odor is reflected in firing rates and sparseness of cortical neurons in response to that odor and these firing rates can directly regulate learning in the system by modifying cholinergic inputs to the system.
Natural stimulus encoding in the retina with linear and nonlinear receptive fields
Popular notions of how the retina encodes visual stimuli typically focus on the center-surround receptive fields of retinal ganglion cells, the output neurons of the retina. In this view, the receptive field acts as a linear filter on the visual stimulus, highlighting spatial contrast and providing efficient representations of natural images. Yet, we also know that many ganglion cells respond vigorously to fine spatial gratings that should not activate the linear filter of the receptive field. Thus, ganglion cells may integrate visual signals nonlinearly across space. In this talk, I will discuss how these (and other) nonlinearities relate to the encoding of natural visual stimuli in the retina. Based on electrophysiological recordings of ganglion and bipolar cells from mouse and salamander retina, I will present methods for assessing nonlinear processing in different cell types and examine their importance and potential function under natural stimulation.
Development of orientation selective receptive fields via Hebbian plasticity
COSYNE 2022
Identifying the nonlinear structure of receptive fields in the mammalian retina
COSYNE 2022
Identifying the nonlinear structure of receptive fields in the mammalian retina
COSYNE 2022
Sparse coding predicts a spectral bias in the development of V1 receptive fields
COSYNE 2022
Sparse coding predicts a spectral bias in the development of V1 receptive fields
COSYNE 2022
Structured random receptive fields enable informative sensory encodings
COSYNE 2022
Structured random receptive fields enable informative sensory encodings
COSYNE 2022
Visuomotor integration gives rise to three-dimensional receptive fields in the primary visual cortex
COSYNE 2023