← Back

Reproducible Analysis

Topic spotlight
TopicWorld Wide

reproducible analysis

Discover seminars, jobs, and research tagged with reproducible analysis across World Wide.
3 curated items3 Seminars
Updated over 3 years ago
3 items · reproducible analysis
3 results
SeminarOpen SourceRecording

Mesmerize: A blueprint for shareable and reproducible analysis of calcium imaging data

Kushal Kolar
University of North Carolina at Chapel Hill
Apr 5, 2022

Mesmerize is a platform for the annotation and analysis of neuronal calcium imaging data. Mesmerize encompasses the entire process of calcium imaging analysis from raw data to interactive visualizations. Mesmerize allows you to create FAIR-functionally linked datasets that are easy to share. The analysis tools are applicable for a broad range of biological experiments and come with GUI interfaces that can be used without requiring a programming background.

SeminarOpen SourceRecording

CaImAn: large-scale batch and online analysis of calcium imaging data

Andrea Giovannucci
University of North Carolina at Chapel Hill
Dec 7, 2021

Advances in fluorescence microscopy enable monitoring larger brain areas in-vivo with finer time resolution. The resulting data rates require reproducible analysis pipelines that are reliable, fully automated, and scalable to datasets generated over the course of months. We present CaImAn, an open-source library for calcium imaging data analysis. CaImAn provides automatic and scalable methods to address problems common to pre-processing, including motion correction, neural activity identification, and registration across different sessions of data collection. It does this while requiring minimal user intervention, with good scalability on computers ranging from laptops to high-performance computing clusters. CaImAn is suitable for two-photon and one-photon imaging, and also enables real-time analysis on streaming data. To benchmark the performance of CaImAn we collected and combined a corpus of manual annotations from multiple labelers on nine mouse two-photon datasets. We demonstrate that CaImAn achieves near-human performance in detecting locations of active neurons.

SeminarOpen SourceRecording

SpikeInterface

Alessio Buccino
ETH Zurich
Jun 10, 2021

Much development has been directed toward improving the performance and automation of spike sorting. This continuous development, while essential, has contributed to an over-saturation of new, incompatible tools that hinders rigorous benchmarking and complicates reproducible analysis. To address these limitations, we developed SpikeInterface, a Python framework designed to unify preexisting spike sorting technologies into a single codebase and to facilitate straightforward comparison and adoption of different approaches. With a few lines of code, researchers can reproducibly run, compare, and benchmark most modern spike sorting algorithms; pre-process, post-process, and visualize extracellular datasets; validate, curate, and export sorting outputs; and more. In this presentation, I will provide an overview of SpikeInterface and, with applications to real and simulated datasets, demonstrate how it can be utilized to reduce the burden of manual curation and to more comprehensively benchmark automated spike sorters.