Research Project
research project
Serafim Rodrigues
The aim of this call is to promote an innovative programme for the return of scientists already established abroad, so that they can develop a relevant research project (in any scientific area) for a period of five years in a Spanish public research institution.
Max Garagnani
The MSc in Computational Cognitive Neuroscience at Goldsmiths, University of London is now accepting applications for full- and part-time studies in 2024-25. The course builds on the multi-disciplinary and strong research profiles of our Computing and Psychology Departments staff. It equips students with a solid theoretical basis and experimental techniques in computational cognitive neuroscience, providing them also with an opportunity to apply their newly acquired knowledge in a practical research project, which may be carried out in collaboration with one of our industry partners. Applications range from computational neuroscience and machine learning to brain-computer interfaces to experimental and clinical research.
Prof. Dr. Barbara Hammer
The opening of a PhD position on the Topic of Machine Learning with Missing Features, as part of a newly established research project of the machine learning group at Bielefeld University and the Honda Research Institute (HRI) Europe in Offenbach. The aim is the development of machine learning methods that are suitable for variable or systematically sparse input features. Examples include models for personal data with partial information or technical applications with varying sensor equipment.
Max Garagnani
The MSc in Computational Cognitive Neuroscience at Goldsmiths, University of London is designed for students with a good degree in the biological/life sciences (psychology, neuroscience, biology, medicine, etc.) or physical sciences (computer science, mathematics, physics, engineering). The course provides a solid theoretical basis and experimental techniques in computational cognitive neuroscience. It includes the opportunity to apply knowledge in a practical research project, potentially in collaboration with industry partners. The programme covers fundamentals of cognitive neuroscience, computational modelling of biological neurons, neuronal circuits, higher brain functions, and includes the study of biologically constrained models of cognitive processes.
Stefan Mihalas
The Shanahan Foundation Fellowship at the Interface of Data and Neuroscience is once again welcoming applications. The fellowship encourages new PhDs from outside of neuroscience to apply their quantitative skills to our datasets. Early career-scientists from computer science, physics, math, and many other fields will be selected to join the Allen Institute and University of Washington for a 3-year fellowship where they will have the freedom to explore a new field and design their own research project.
Towards open meta-research in neuroimaging
When meta-research (research on research) makes an observation or points out a problem (such as a flaw in methodology), the project should be repeated later to determine whether the problem remains. For this we need meta-research that is reproducible and updatable, or living meta-research. In this talk, we introduce the concept of living meta-research, examine prequels to this idea, and point towards standards and technologies that could assist researchers in doing living meta-research. We introduce technologies like natural language processing, which can help with automation of meta-research, which in turn will make the research easier to reproduce/update. Further, we showcase our open-source litmining ecosystem, which includes pubget (for downloading full-text journal articles), labelbuddy (for manually extracting information), and pubextract (for automatically extracting information). With these tools, you can simplify the tedious data collection and information extraction steps in meta-research, and then focus on analyzing the text. We will then describe some living meta-research projects to illustrate the use of these tools. For example, we’ll show how we used GPT along with our tools to extract information about study participants. Essentially, this talk will introduce you to the concept of meta-research, some tools for doing meta-research, and some examples. Particularly, we want you to take away the fact that there are many interesting open questions in meta-research, and you can easily learn the tools to answer them. Check out our tools at https://litmining.github.io/
Epilepsy genetics 2023: From research to advanced clinical genetic test interpretation
The presentation will provide an overview of the expanding role of genetic factors in epilepsy. It will delve into the fundamentals of this field and elucidate how digital tools and resources can aid in the re-evaluation of genetic test results. In the initial segment of the presentation, Dr. Lal will examine the advancements made over the past two decades regarding the genetic architecture of various epilepsy types. Additionally, he will present research studies in which he has actively participated, offering concrete examples. Subsequently, during the second part of the talk, Dr. Lal will share the ongoing research projects that focus on epilepsy genetics, bioinformatics, and health record data science.
Research Data Management in neuroimaging
This set of short webinars will provide neuroscience researchers working in a neuroimaging setting with practical tips on strengthening credibility at different stages of the research project. Each webinar will be hosted by Cassandra Gould Van Praag from the Wellcome Centre for Integrative Neuroimaging.
Data privacy for neuroimaging
This set of short webinars will provide neuroscience researchers working in a neuroimaging setting with practical tips on strengthening credibility at different stages of the research project. Each webinar will be hosted by Cassandra Gould Van Praag from the Wellcome Centre for Integrative Neuroimaging.
Preregistration in neuroimaging
This set of short webinars will provide neuroscience researchers working in a neuroimaging setting with practical tips on strengthening credibility at different stages of the research project. Each webinar will be hosted by Cassandra Gould Van Praag from the Wellcome Centre for Integrative Neuroimaging.
Adaptation via innovation in the animal kingdom
Over the course of evolution, the human race has achieved a number of remarkable innovations, that have enabled us to adapt to and benefit from the environment ever more effectively. The ongoing environmental threats and health disasters of our world have now made it crucial to understand the cognitive mechanisms behind innovative behaviours. In my talk, I will present two research projects with examples of innovation-based behavioural adaptation from the taxonomic kingdom of animals, serving as a comparative psychological model for mapping the evolution of innovation. The first project focuses on the challenge of overcoming physical disability. In this study, we investigated an injured kea (Nestor notabilis) that exhibits an efficient, intentional, and innovative tool-use behaviour to compensate his disability, showing evidence for innovation-based adaptation to a physical disability in a non-human species. The second project focuses on the evolution of fire use from a cognitive perspective. Fire has been one of the most dominant ecological forces in human evolution; however, it is still unknown what capabilities and environmental factors could have led to the emergence of fire use. In the core study of this project, we investigated a captive population of Japanese macaques (Macaca fuscata) that has been regularly exposed to campfires during the cold winter months for over 60 years. Our results suggest that macaques are able to take advantage of the positive effects of fire while avoiding the dangers of flames and hot ashes, and exhibit calm behaviour around the bonfire. In addition, I will present a research proposal targeting the foraging behaviour of predatory birds in parts of Australia frequently affected by bushfires. Anecdotal reports suggest that some birds use burning sticks to spread the flames, a behaviour that has not been scientifically observed and evaluated. In summary, the two projects explore innovative behaviours along three different species groups, three different habitats, and three different ecological drivers, providing insights into the cognitive and behavioural mechanisms of adaptation through innovation.
Sustainability in Space and on Earth: Research Initiatives of the Space Enabled Research Group
The presentation will present the work of the Space Enabled Research Group at the MIT Media Lab. The mission of the Space Enabled Research Group is to advance justice in Earth’s complex systems using designs enabled by space. Our message is that six types of space technology are supporting societal needs, as defined by the United Nations Sustainable Development Goals. These six technologies include satellite earth observation, satellite communication, satellite positioning, microgravity research, technology transfer, and the infrastructure related to space research and education. While much good work has been done, barriers remain that limit the application of space technology as a tool for sustainable development. The Space Enabled Research Group works to increase the opportunities to apply space technology in support of the Sustainable Development Goals and to support space sustainability. Our research applies six methods, including design thinking, art, social science, complex systems, satellite engineering and data science. We pursue our work by collaborating with development leaders who represent multilateral organizations, national and local governments, non-profits and entrepreneurial firms to identify opportunities to apply space technology in their work. We strive to enable a more just future in which every community can easily and affordably apply space technology. The work toward our mission covers three themes: 1) Research to apply existing space technology to support the United Nations Sustainable Development Goals; 2) Research to design space systems that are accessible and sustainable; and 3) Research to study the relationship between technology design and justice. The presentation will give examples of research projects within each of these themes.
Abstraction and Analogy in Natural and Artificial Intelligence
In 1955, John McCarthy and colleagues proposed an AI summer research project with the following aim: “An attempt will be made to find how to make machines use language, form abstractions and concepts, solve kinds of problems now reserved for humans, and improve themselves.” More than six decades later, all of these research topics remain open and actively investigated in the AI community. While AI has made dramatic progress over the last decade in areas such as vision, natural language processing, and robotics, current AI systems still almost entirely lack the ability to form humanlike concepts and abstractions. Some cognitive scientists have proposed that analogy-making is a central mechanism for conceptual abstraction and understanding in humans. Douglas Hofstadter called analogy-making “the core of cognition”, and Hofstadter and co-author Emmanuel Sander noted, “Without concepts there can be no thought, and without analogies there can be no concepts.” In this talk I will reflect on the role played by analogy-making at all levels of intelligence, and on prospects for developing AI systems with humanlike abilities for abstraction and analogy.