Retinal Implant
retinal implant
Toward a High-fidelity Artificial Retina for Vision Restoration
Electronic interfaces to the retina represent an exciting development in science, engineering, and medicine – an opportunity to exploit our knowledge of neural circuitry and function to restore or even enhance vision. However, although existing devices demonstrate proof of principle in treating incurable blindness, they produce limited visual function. Some of the reasons for this can be understood based on the precise and specific neural circuitry that mediates visual signaling in the retina. Consideration of this circuitry suggests that future devices may need to operate at single-cell, single-spike resolution in order to mediate naturalistic visual function. I will show large-scale multi-electrode recording and stimulation data from the primate retina indicating that, in some cases, such resolution is possible. I will also discuss cases in which it fails, and propose that we can improve artificial vision in such conditions by incorporating our knowledge of the visual system in bi-directional devices that adapt to the host neural circuitry. Finally, I will introduce the Stanford Artificial Retina Project, aimed at developing a retinal implant that more faithfully reproduces the neural code of the retina, and briefly discuss the implications for scientific investigation and for other neural interfaces of the future.