Retinal Responses
retinal responses
Retinal responses to natural inputs
The research in my lab focuses on sensory signal processing, particularly in cases where sensory systems perform at or near the limits imposed by physics. Photon counting in the visual system is a beautiful example. At its peak sensitivity, the performance of the visual system is limited largely by the division of light into discrete photons. This observation has several implications for phototransduction and signal processing in the retina: rod photoreceptors must transduce single photon absorptions with high fidelity, single photon signals in photoreceptors, which are only 0.03 – 0.1 mV, must be reliably transmitted to second-order cells in the retina, and absorption of a single photon by a single rod must produce a noticeable change in the pattern of action potentials sent from the eye to the brain. My approach is to combine quantitative physiological experiments and theory to understand photon counting in terms of basic biophysical mechanisms. Fortunately there is more to visual perception than counting photons. The visual system is very adept at operating over a wide range of light intensities (about 12 orders of magnitude). Over most of this range, vision is mediated by cone photoreceptors. Thus adaptation is paramount to cone vision. Again one would like to understand quantitatively how the biophysical mechanisms involved in phototransduction, synaptic transmission, and neural coding contribute to adaptation.
Neural codes in early sensory areas maximize fitness
It has generally been presumed that sensory information encoded by a nervous system should be as accurate as its biological limitations allow. However, perhaps counter intuitively, accurate representations of sensory signals do not necessarily maximize the organism’s chances of survival. We show that neural codes that maximize reward expectation—and not accurate sensory representations—account for retinal responses in insects, and retinotopically-specific adaptive codes in humans. Thus, our results provide evidence that fitness-maximizing rules imposed by the environment are applied at the earliest stages of sensory processing.