Reward Processing
reward processing
Prof. Shu-Chen Li
The Chair of Lifespan Developmental Neuroscience investigates neurocognitive mechanisms underlying perceptual, cognitive, and motivational development across the lifespan. The main themes of our research are neurofunctional mechanisms underlying lifespan development of episodic and spatial memory, cognitive control, reward processing, decision making, perception and action. We also pursue applied research to study effects of behavioral intervention, non-invasive brain stimulation, or digital technologies in enhancing functional plasticity for individuals of difference ages. We utilize a broad range of neurocognitive (e.g., EEG, fNIRs, fMRI, tDCS) and computational methods. The here announced position is embedded in a newly established research group funded by the DFG (FOR5429), with a focus on modulating brain networks for memory and learning by using focalized transcranial electrical stimulation (tES). The subproject with which this position is associated will study effects of focalized tES on value-based sequential learning at the behavioral and brain levels in adults. The data collection for this subproject will mainly be carried out at the Berlin site (Center for Cognitive Neuroscience, FU Berlin).
The neuroscience of lifestyle interventions for mental health: the BrainPark approach
Our everyday behaviours, such as physical activity, sleep, diet, meditation, and social connections, have a potent impact on our mental health and the health of our brain. BrainPark is working to harness this power by developing lifestyle-based interventions for mental health and investigating how they do and don’t change the brain, and for whom they are most effective. In this webinar, Dr Rebecca Segrave and Dr Chao Suo will discuss BrainPark’s approach to developing lifestyle-based interventions to help people get better control of compulsive behaviours, and the multi-modality neuroimaging approaches they take to investigating outcomes. The webinar will explore two current BrainPark trials: 1. Conquering Compulsions - investigating the capacity of physical exercise and meditation to alter reward processing and help people get better control of a wide range of unhelpful habits, from drinking to eating to cleaning. 2. The Brain Exercise Addiction Trial (BEAT) - an NHMRC funded investigation into the capacity of physical exercise to reverse the brain harms caused by long-term heavy cannabis use. Dr Rebecca Segrave is Deputy Director and Head of Interventions Research at BrainPark, the David Winston Turner Senior Research Fellow within the Turner Institute for Brain and Mental Health, and an AHRPA registered Clinical Neuropsychologist. Dr Chao Suo is Head of Technology and Neuroimaging at BrainPark and a Research Fellow within the Turner Institute for Brain and Mental Health.
Reward processing in psychosis: adding meanings to the findings
Much of our daily behavior is driven by rewards. The ability to learn to pursue rewarding experiences is, in fact, an essential metric of mental health. Conversely, reduced capacity to engage in adaptive goal-oriented behavior is the hallmark of apathy, and present in the psychotic disorder. The search for its underlying mechanisms has resulted in findings of profound impairments in learning from rewards and the associated blunted activation in key reward areas of the brain of patients with psychosis. An emerging research field has been relying on digital phenotyping tools and ecological momentary assessments (EMA) that map patients’ current mood, behavior and context in the flow of their daily lives. Using these tools, we have started to see a different picture of apathy, one that is exquisitely driven by the environment. For one, reward sensitivity appears to be blunted by stressors, and exposure to undue chronic stress in the daily life may result in apathy in those predisposed to psychosis. Secondly, even patients with psychosis who exhibit clinically elevated levels of apathy are perfectly capable of seeking out and enjoying social interactions in their daily life, if their environment allows them to do so. The use of digital phenotyping tools in combination with neuroimaging of apathy not only allows us to add meanings to the neurobiological findings, but could also help design rational interventions.
dACC stimulation stabilizes behavior without affecting reward processing
COSYNE 2025
Implication of polyunsaturated fatty acid (PUFA) biostatus in dopamine transmission-related reward processing deficits
FENS Forum 2024
Unraveling the complexity of stress and reward processing: Nucleus incertus responses to noxious stimulus – electrophysiological, anatomical and immediate early gene expression studies
FENS Forum 2024
Unravelling the complexity of stress and reward processing: The innervation of midbrain nuclei by the nucleus incertus – Anatomical, electrophysiological and behavioural studies in rats
FENS Forum 2024