Rule Learning
rule learning
Brain and Behavior: Employing Frequency Tagging as a Tool for Measuring Cognitive Abilities
Frequency tagging based on fast periodic visual stimulation (FPVS) provides a window into ongoing visual and cognitive processing and can be leveraged to measure rule learning and high-level categorization. In this talk, I will present data demonstrating highly proficient categorization as living and non-living in preschool children, and characterize the development of this ability during infancy. In addition to associating cognitive functions with development, an intriguing question is whether frequency tagging also captures enduring individual differences, e.g. in general cognitive abilities. First studies indicate high psychometric quality of FPVS categorization responses (XU et al., Dzhelyova), providing a basis for research on individual differences. I will present results from a pilot study demonstrating high correlations between FPVS categorization responses and behavioral measures of processing speed and fluid intelligences. Drawing upon this first evidence, I will discuss the potential of frequency tagging for diagnosing cognitive functions across development.
Rule learning representation in the fronto-parietal network
We must constantly adapt the rules we use to guide our attention. To understand how the brain learns these rules, we designed a novel task that required monkeys to learn which color is the most rewarded at a given time (the current rule). However, just as in real life, the monkey was never explicitly told the rule. Instead, they had to learn it through trial and error by choosing a color, receiving feedback (amount of reward), and then updating their internal rule. After the monkeys reached a behavioral criterion, the rule changed. This change was not cued but could be inferred based on reward feedback. Behavioral modeling found monkeys used rewards to learn the rules. After the rule changed, animals adopted one of two strategies. If the change was small, reflected in a small reward prediction error, the animals continuously updated their rule. However, for large changes, monkeys ‘reset’ their belief about the rule and re-learned the rule from scratch. To understand the neural correlates of learning new rules, we recorded neurons simultaneously from the prefrontal and parietal cortex. We found that the strength of the rule representation increased with the certainty about the current rule, and that the certainty about the rule was represented both implicitly and explicitly in the population.
Is Rule Learning Like Analogy?
Humans’ ability to perceive and abstract relational structure is fundamental to our learning. It allows us to acquire knowledge all the way from linguistic grammar to spatial knowledge to social structures. How does a learner begin to perceive structure in the world? Why do we sometimes fail to see structural commonalities across events? To begin to answer these questions, I attempt to bridge two large, yet somewhat separate research traditions in understanding human’s structural abstraction: rule learning (Marcus et al., 1999) and analogical learning (Gentner, 1989). On the one hand, rule learning research has shown humans’ domain-general ability and ease—as early as 7-month-olds—to abstract structure from a limited experience. On the other hand, analogical learning works have shown robust constraints in structural abstraction: young learners prefer object similarity over relational similarity. To understand this seeming paradox between ease and difficulty, we conducted a series of studies using the classic rule learning paradigm (Marcus et al., 1999) but with an analogical (object vs. relation) twist. Adults were presented with 2-minute sentences or events (syllables or shapes) containing a rule. At test, they had to choose between rule abstraction and object matches—the same syllable or shape they saw before. Surprisingly, while in the absence of object matches adults were perfectly capable of abstracting the rule, their ability to do so declined sharply when object matches were present. Our initial results suggest that rule learning ability may be subject to the usual constraints and signatures of analogical learning: preference to object similarity can dampen rule generalization. Humans’ abstraction is also concrete at the same time.
Analogical Reasoning and Executive Functions - A Life Span Approach
From a developmental standpoint, it has been argued that two major complementary factors contribute to the development of analogy comprehension: world knowledge and executive functions. Here I will provide evidence in support of the second view. Beyond paradigms that manipulate task difficulty (e.g., number and types of distractors and semantic distance between domains) we will provide eye-tracking data that describes differences in the way children and adults compare the base and target domains in analogy problems. We will follow the same approach with ageing people. This latter population provides a unique opportunity to disentangle the contribution of knowledge and executive processes in analogy making since knowledge is (more than) preserved and executive control is decreasing. Using this paradigm, I will show the extent to which world knowledge (assessed through vocabulary) compensates for decreasing executive control in older populations. Our eye-tracking data suggests that, to a certain extent, differences between younger and older adults are analogous to the differences between younger adults and children in the way they compare the base and the target domains in analogy problems.
Non-stationary recurrent neural networks for reconstructing computational dynamics of rule learning
COSYNE 2023