Scientific Instruments
scientific instruments
Open source FPGA tools for building research devices
Edmund will present why to use FPGAs when building scientific instruments, when and why to use open source FPGA tools, the history of their development, their development status, currently supported FPGA families and functions, current developments in design languages and tools, the community, freely available design blocks, and possible future developments.
Bacterial rheotaxis in bulk and at surfaces
Individual bacteria transported in viscous flows, show complex interactions with flows and bounding surfaces resulting from their complex shape as well as their activity. Understanding these transport dynamics is crucial, as they impact soil contamination, transport in biological conducts or catheters, and constitute thus a serious health threat. Here we investigate the trajectories of individual E-coli bacteria in confined geometries under flow, using microfluidic model systems in bulk flows as well as close to surfaces using a novel Langrangian 3D tracking method. Combining experimental observations and modelling we elucidate the origin of upstream swimming, lateral drift or persistent transport along corners. [1] Junot et al, EPL, 126 (2019) 44003 [2] Mathijssen et al. 10:3 (2019) Nature Comm. [3] Figueroa-Morales et al., Soft Matter, 2015,11, 6284-6293 [4] Darnige et al. Review of Scientific Instruments 88, 055106 (2017) [5] Jing et al, Science Advances, 2020; 6 : eabb2012 [6] Figueroa-Morales et al, Sci. Adv. 2020; 6 : eaay0155, 2020, 10.1126/sciadv.aay0155