← Back

Sensory Data

Topic spotlight
TopicWorld Wide

sensory data

Discover seminars, jobs, and research tagged with sensory data across World Wide.
4 curated items3 Seminars1 ePoster
Updated about 2 years ago
4 items · sensory data
4 results
SeminarNeuroscience

Modeling the Navigational Circuitry of the Fly

Larry Abbott
Columbia University
Nov 30, 2023

Navigation requires orienting oneself relative to landmarks in the environment, evaluating relevant sensory data, remembering goals, and convert all this information into motor commands that direct locomotion. I will present models, highly constrained by connectomic, physiological and behavioral data, for how these functions are accomplished in the fly brain.

SeminarNeuroscience

Learning through the eyes and ears of a child

Brenden Lake
NYU
Apr 20, 2023

Young children have sophisticated representations of their visual and linguistic environment. Where do these representations come from? How much knowledge arises through generic learning mechanisms applied to sensory data, and how much requires more substantive (possibly innate) inductive biases? We examine these questions by training neural networks solely on longitudinal data collected from a single child (Sullivan et al., 2020), consisting of egocentric video and audio streams. Our principal findings are as follows: 1) Based on visual only training, neural networks can acquire high-level visual features that are broadly useful across categorization and segmentation tasks. 2) Based on language only training, networks can acquire meaningful clusters of words and sentence-level syntactic sensitivity. 3) Based on paired visual and language training, networks can acquire word-referent mappings from tens of noisy examples and align their multi-modal conceptual systems. Taken together, our results show how sophisticated visual and linguistic representations can arise through data-driven learning applied to one child’s first-person experience.

SeminarNeuroscienceRecording

Event-based Backpropagation for Exact Gradients in Spiking Neural Networks

Christian Pehle
Heidelberg University
Nov 2, 2021

Gradient-based optimization powered by the backpropagation algorithm proved to be the pivotal method in the training of non-spiking artificial neural networks. At the same time, spiking neural networks hold the promise for efficient processing of real-world sensory data by communicating using discrete events in continuous time. We derive the backpropagation algorithm for a recurrent network of spiking (leaky integrate-and-fire) neurons with hard thresholds and show that the backward dynamics amount to an event-based backpropagation of errors through time. Our derivation uses the jump conditions for partial derivatives at state discontinuities found by applying the implicit function theorem, allowing us to avoid approximations or substitutions. We find that the gradient exists and is finite almost everywhere in weight space, up to the null set where a membrane potential is precisely tangent to the threshold. Our presented algorithm, EventProp, computes the exact gradient with respect to a general loss function based on spike times and membrane potentials. Crucially, the algorithm allows for an event-based communication scheme in the backward phase, retaining the potential advantages of temporal sparsity afforded by spiking neural networks. We demonstrate the optimization of spiking networks using gradients computed via EventProp and the Yin-Yang and MNIST datasets with either a spike time-based or voltage-based loss function and report competitive performance. Our work supports the rigorous study of gradient-based optimization in spiking neural networks as well as the development of event-based neuromorphic architectures for the efficient training of spiking neural networks. While we consider the leaky integrate-and-fire model in this work, our methodology generalises to any neuron model defined as a hybrid dynamical system.

ePoster

Model Selection in Sensory Data Interpretation

Francesco Guido Rinaldi, Eugenio Piasini

Bernstein Conference 2024