Similarity Judgments
similarity judgments
Explaining an asymmetry in similarity and difference judgments
Explicit similarity judgments tend to emphasize relational information more than do difference judgments. In this talk, I propose and test the hypothesis that this asymmetry arises because human reasoners represent the relation different as the negation of the relation same (i.e., as not-same). This proposal implies that processing difference is more cognitively demanding than processing similarity. Both for verbal comparisons between word pairs, and for visual comparisons between sets of geometric shapes, participants completed a triad task in which they selected which of two options was either more similar to or more different from a standard. On unambiguous trials, one option was unambiguously more similar to the standard, either by virtue of featural similarity or by virtue of relational similarity. On ambiguous trials, one option was more featurally similar (but less relationally similar) to the standard, whereas the other was more relationally similar (but less featurally similar). Given the higher cognitive complexity of assessing relational similarity, we predicted that detecting relational difference would be particularly demanding. We found that participants (1) had more difficulty accurately detecting relational difference than they did relational similarity on unambiguous trials, and (2) tended to emphasize relational information more when judging similarity than when judging difference on ambiguous trials. The latter finding was captured by a computational model of comparison that weights relational information more heavily for similarity than for difference judgments. These results provide convergent evidence for a representational asymmetry between the relations same and different.
Predicting Patterns of Similarity Among Abstract Semantic Relations
In this talk, I will present some data showing that people’s similarity judgments among word pairs reflect distinctions between abstract semantic relations like contrast, cause-effect, or part-whole. Further, the extent that individual participants’ similarity judgments discriminate between abstract semantic relations was linearly associated with both fluid and crystallized verbal intelligence, albeit more strongly with fluid intelligence. Finally, I will compare three models according to their ability to predict these similarity judgments. All models take as input vector representations of individual word meanings, but they differ in their representation of relations: one model does not represent relations at all, a second model represents relations implicitly, and a third model represents relations explicitly. Across the three models, the third model served as the best predictor of human similarity judgments suggesting the importance of explicit relation representation to fully account for human semantic cognition.