← Back

Single Cell Resolution

Topic spotlight
TopicWorld Wide

Single Cell Resolution

Discover seminars, jobs, and research tagged with Single Cell Resolution across World Wide.
5 curated items4 Seminars1 ePoster
Updated about 2 years ago
5 items · Single Cell Resolution
5 results
SeminarNeuroscienceRecording

Neural Mechanisms of Subsecond Temporal Encoding in Primary Visual Cortex

Samuel Post
University of California, Riverside
Nov 28, 2023

Subsecond timing underlies nearly all sensory and motor activities across species and is critical to survival. While subsecond temporal information has been found across cortical and subcortical regions, it is unclear if it is generated locally and intrinsically or if it is a read out of a centralized clock-like mechanism. Indeed, mechanisms of subsecond timing at the circuit level are largely obscure. Primary sensory areas are well-suited to address these question as they have early access to sensory information and provide minimal processing to it: if temporal information is found in these regions, it is likely to be generated intrinsically and locally. We test this hypothesis by training mice to perform an audio-visual temporal pattern sensory discrimination task as we use 2-photon calcium imaging, a technique capable of recording population level activity at single cell resolution, to record activity in primary visual cortex (V1). We have found significant changes in network dynamics through mice’s learning of the task from naive to middle to expert levels. Changes in network dynamics and behavioral performance are well accounted for by an intrinsic model of timing in which the trajectory of q network through high dimensional state space represents temporal sensory information. Conversely, while we found evidence of other temporal encoding models, such as oscillatory activity, we did not find that they accounted for increased performance but were in fact correlated with the intrinsic model itself. These results provide insight into how subsecond temporal information is encoded mechanistically at the circuit level.

SeminarNeuroscience

One by one: brain organoid modelling of neurodevelopmental disorders at single cell resolution

Giuseppe Testa
Human Technopole
Mar 8, 2022
SeminarNeuroscience

Rethinking neuroconstructivism through brain organoids at single cell resolution

Giuseppe Testa
Dec 14, 2020
ePoster

RNA splicing revisited: New molecular tools for analysis of cryptic splice donors at single cell resolution

Magnus Harnau, Barbara Schweissthal, Leonie Emde, Steffen Fricke, Jochen Meier

FENS Forum 2024