← Back

Sinusoidal

Topic spotlight
TopicWorld Wide

sinusoidal transformation

Discover seminars, jobs, and research tagged with sinusoidal transformation across World Wide.
1 curated item1 Seminar
Updated almost 4 years ago
1 items · sinusoidal transformation
1 result
SeminarNeuroscience

A novel form of retinotopy in area V2 highlights location-dependent feature selectivity in the visual system

Madineh Sedigh-Sarvestani
Max Planck Florida Institute for Neuroscience
Jan 18, 2022

Topographic maps are a prominent feature of brain organization, reflecting local and large-scale representation of the sensory surface. ​​Traditionally, such representations in early visual areas are conceived as retinotopic maps preserving ego-centric retinal spatial location while ensuring that other features of visual input are uniformly represented for every location in space. I will discuss our recent findings of a striking departure from this simple mapping in the secondary visual area (V2) of the tree shrew that is best described as a sinusoidal transformation of the visual field. This sinusoidal topography is ideal for achieving uniform coverage in an elongated area like V2 as predicted by mathematical models designed for wiring minimization, and provides a novel explanation for stripe-like patterns of intra-cortical connections and functional response properties in V2. Our findings suggest that cortical circuits flexibly implement solutions to sensory surface representation, with dramatic consequences for large-scale cortical organization. Furthermore our work challenges the framework of relatively independent encoding of location and features in the visual system, showing instead location-dependent feature sensitivity produced by specialized processing of different features in different spatial locations. In the second part of the talk, I will propose that location-dependent feature sensitivity is a fundamental organizing principle of the visual system that achieves efficient representation of positional regularities in visual input, and reflects the evolutionary selection of sensory and motor circuits to optimally represent behaviorally relevant information. The relevant papers can be found here: V2 retinotopy (Sedigh-Sarvestani et al. Neuron, 2021) Location-dependent feature sensitivity (Sedigh-Sarvestani et al. Under Review, 2022)