Topic spotlight
TopicWorld Wide

sleep

Discover seminars, jobs, and research tagged with sleep across World Wide.
122 curated items60 Seminars40 ePosters22 Positions
Updated about 20 hours ago
122 items · sleep
122 results
Position

Prof. Carmen Varela

Florida State University
Tallahassee, United States
Dec 5, 2025

The Varela lab is hiring a full-time research assistant to perform electrophysiology and pharmacology experiments in rats to investigate the link between sleep architecture, memory consolidation and thalamic neural activity. This project is part of a wider research program in the lab that seeks to provide mechanistic insight on the role of sleep dysfunction in Alzheimer’s Disease and related disorders. This is a great opportunity for students looking to strengthen their research skills and academic competitiveness for PhD and MD-PhD Programs in Neuroscience. Start date flexible in the Fall of 2023 or early 2024; 1 year with possibility of renewal. The Varela laboratory investigates the cellular and network mechanisms of learning and memory in rodents. We use a broad range of state-of-the-art methods, including multi-site extracellular recordings in freely behaving rats, closed-loop manipulations of brain activity, optogenetics, and computational approaches http://www.varelalab.org/

Position

Carmen Varela

Florida State University
Tallahassee, Florida
Dec 5, 2025

The Varela lab is hiring a full-time research assistant to provide administrative and technical support in a highly collaborative lab environment. Start date late Summer or Fall of 2023; 1 year with possibility of renewal. The Varela laboratory investigates the cellular and network mechanisms of learning and memory in rodents. We use a broad range of state-of-the-art methods, including multi-site extracellular recordings in freely behaving rats, closed-loop manipulations of brain activity, optogenetics, and computational approaches http://www.varelalab.org/ We are a highly interactive and multi-disciplinary lab. A major strength of our team is the diversity of backgrounds, cultures and viewpoints, which all enhance the learning experience for trainees. As a small young lab, our environment resembles a startup company; we love what we do and work closely to support and help each other succeed.

PositionComputational Neuroscience

Prof Geoff Goodhill

Washington University in St Louis
St Louis, USA
Dec 5, 2025

A new NIH-funded collaboration between David Prober (Caltech), Thai Truong (USC) and Geoff Goodhill (Washington University in St Louis) aims to gain new insight into the neural circuits underlying sleep, through a combination of whole-brain neural recordings in zebrafish and theoretical/computational modeling. The Goodhill lab is now looking for 2 postdocs for the modeling and computational analysis components. Using novel 2-photon imaging technologies Prober and Truong will record from the entire larval zebrafish brain at single-neuron resolution continuously for long periods of time, examining neural circuit activity during normal day-night cycles and in response to genetic and pharmacological perturbations. The Goodhill lab will analyze the resulting huge datasets using a variety of sophisticated computational approaches, and use these results to build new theoretical models that reveal how neural circuits interact to govern sleep. Theoretical and experimental work will be intimately linked.

Position

Prof. Carmen Varela

Florida Atlantic University
Jupiter, Florida, USA
Dec 5, 2025

Projects in the lab aim to discover biomarkers of sleep oscillations that correlate with memory consolidation and sleep quality. Sleep disruption is a common symptom of neurodegenerative disorders and is thought to be linked to their progression. Thalamocortical activity during sleep is critical for the contribution of sleep to memory consolidation, but it is not clear what oscillatory and cellular activity patterns relate to sleep quality and memory consolidation. The candidate will assist with administrative and scientific aspects of this project, using rats to investigate the patterns of thalamic activity that promote healthy sleep function. More generally, the lab uses state-of-the-art techniques to investigate the neural network mechanisms of cognitive behavior, with a focus on learning and memory and on the role of the neuronal circuits formed by the thalamus.

PositionNeuroscience

Prof Paul Shaw

Washington University in St Louis School of Medicine
Saint Louis Missouri
Dec 5, 2025

A postdoctoral position is available immediately in the lab of Dr. Paul Shaw in the Neuroscience Department at Washington University School of Medicine in St. Louis to study the molecular and cellular bases for sleep regulation, plasticity and memory consolidation in the fruit fly Drosophila melanogaster. Successful candidates will have the opportunity to learn and apply molecular, genetic, physiological, and behavioral tools to study mechanisms by which sleep might influence plasticity. Qualified applicants are expected to hold a recent doctoral degree in the biological sciences, or in related disciplines. Prior experience in working with flies and broad understanding of genetic principles are highly preferred. Highly competitive salary and benefits are available and will commensurate with experience. Washington University School of Medicine offers a highly collaborative, top-notch training and research environment in neuroscience and the biomedical sciences. Wash U’s community is a very active and highly regarded neuroscience community, and is an excellent training environment for postdoctoral fellows. Interested candidates should email their curriculum vitae, a letter of interest outlining experience and research goals, and the names and contact information of at least three references to shawp@wustl.edu EOE Washington University is an Equal Opportunity Employer. All qualified applicants will receive consideration for employment without regard to race, color, religion, age, sex, sexual orientation, gender identity or expression, national origin, genetic information, disability, or protected veteran status.

Position

Dr. Carmen Varela

Florida Atlantic University
Jupiter, Florida, USA
Dec 5, 2025

The goal of this project is to investigate biomarkers of cellular activity in the thalamus that correlate with sleep depth and stability. Sleep disruption is a common symptom of neurodegenerative disorders and is thought to be linked to their progression. The thalamus is a critical structure in the maintenance and microarchitecture of sleep, but it is unclear how cellular activity in the thalamus relates to sleep structure. We use rats to investigate the patterns of thalamic cell activity that promote healthy sleep function. More generally, the lab uses state-of-the-art techniques to investigate the mechanisms of cognitive behavior, with a focus on learning and memory and on the role of the neuronal circuits formed by the thalamus.

PositionNeuroscience

Prof Yao Chen

Washington University School of Medicine
Saint Louis, MO, USA
Dec 5, 2025

Dr. Yao Chen’s Laboratory in the Department of Neuroscience at Washington University School of Medicine is seeking a motivated and curious scientist for a full-time senior scientist position. Our laboratory conducts fundamental research to understand how dynamics of molecular signals contribute to neuromodulator actions and sleep functions. We employ a wide variety of techniques ex vivo and in vivo, including advanced microscopy, electrophysiology, molecular biology, and behavior analysis. The principal investigator is committed to fostering a lab culture that promotes equity, kindness, rigor, and creativity This position collaborates on designing, conducting and reporting of research projects.

PositionNeuroscience

Prof Yao Chen

Washington University School of Medicine
Saint Louis, MO, USA
Dec 5, 2025

Dr. Yao Chen’s Laboratory in the Department of Neuroscience at Washington University School of Medicine is seeking a motivated and curious scientist for a full-time staff scientist position. Our laboratory conducts fundamental research to understand how dynamics of molecular signals contribute to neuromodulator actions and sleep functions. We employ a wide variety of techniques ex vivo and in vivo, including advanced microscopy, electrophysiology, molecular biology, and behavior analysis. The principal investigator is committed to fostering a lab culture that promotes equity, kindness, rigor, and creativity. The position is responsible for developing and conducting research projects, including experimental design, implementation, data analysis and documentation of experiment results.

Position

Edwin Robertson

University of Glasgow; Institute of Neuroscience and Psychology
Glasgow, UK
Dec 5, 2025

An exciting opportunity has arisen for an experienced Researcher to make a leading contribution to a project on “Modulating sleep with learning to enhance learning”, joining the laboratory of Professor Edwin M. Robertson within the Institute of Neuroscience & Psychology. This group examines the architecture of human memory. We integrate together a variety of cutting edge techniques including behavioural analysis, functional imaging and brain stimulation. Together, these are used to provide a picture of how the content and structure of a memory determines its fate (retained or enhanced) across different brain states (sleep vs. wakefulness). Currently, there is an opening in our group funded by the Leverhulme Trust (UK). It would suit a bright, enthusiastic, aspiring researcher willing to think carefully, creatively, critically and collaboratively (with the Principal Investigator) about their work in this project on human neuroscience. The group provides a superb training environment, with many using it as a foundation to secure independent fellowships, and faculty positions. The laboratory is housed within the Institute of Neuroscience & Psychology (INP), which is home to several Wellcome Trust Investigators, and national academy members (Royal Society, Edinburgh).

PositionNeuroscience

Assistant Prof Yao Chen

Washington University School of Medicine
Saint Louis, Missouri, USA
Dec 5, 2025

Are you looking for immersion in exciting science and cutting-edge technology? Yao Chen’s Laboratory in the Department of Neuroscience at Washington University School of Medicine is seeking a highly motivated individual for a full-time research technician position. Our laboratory conducts basic research to understand how dynamics of molecular signals contribute to neuromodulator actions and sleep functions. We employ a wide variety of techniques ex vivo and in vivo, including two-photon fluorescence lifetime imaging microscopy, electrophysiology, biosensor design, opto/chemogenetics, molecular biology, pharmacology, and behavior analysis. For a complete job description and to apply, please visit https://jobs.wustl.edu and search for Job ID number “51507” for Research Technician II - Neuroscience – 51507.

Position

Dr. Gaen Plancher

University of Lyon
Lyon, France
Dec 5, 2025

The postdoctorat is part of a project funded by the French National Research Agency (ANR). The objective of this proposal is to examine the cognitive and neuronal mechanisms of information storage in memory from the very beginning, when information is present in working memory, until the late stage of sleep-dependent long-term consolidation of this information. One feature of the project is to investigate these mechanisms in humans and in animals (rats), the animal model offering a more direct measurement of cognitive and neuronal mechanisms of memory. The project brings together specialists in neurocognitive mechanisms of memory in humans and specialists in neuronal mechanisms of memory in rats. The project of the postdoctorat per se is focused on humans. It is well acknowledged that the content of working memory is erased and reset after a short time, to prevent irrelevant information from proactively interfering with newly stored information. Gaël Malleret, Paul Salin and their colleagues (2017) recently explored these interference phenomena in rats. Surprisingly, they observed that under certain conditions (task with a high level of proactive interference), these interferences could be consolidated inlong-term-memory. A 24 hour-gap, involving sleep, known to allow consolidation processes to unfold, was a necessary and sufficient condition for the long-term proactive interference effect to occur. The objective of the postdoctorat is to better understand the impact of these interference phenomena in memory of humans. Behavioral and neuronal (EEG) data will be collected at various delays: at immediate, delayed and after an interval of sleep.

Position

Dr Shuzo Sakata

University of Strathclyde
Glasgow, UK
Dec 5, 2025

A postdoctoral research associate position is available to work with Dr Shuzo Sakata at University of Strathclyde in Glasgow, UK. This position is funded by the Medical Research Council (MRC). Our group has been investigating state-dependent and cell type-specific information processing in the brain by combining a range of techniques, including in vivo high-density electrophysiological recording, calcium imaging, optogenetics, behavioural analysis and computational approaches. In this project, we will investigate how functional interactions between neurons and astrocytes regulate the architecture of the sleep-wake cycle in mice by utilising state-of-the-art molecular and neurophotonic technologies. This project will also be conducted alongside the recently launched international consortium, DEEPER, funded from the EU’s Horizon 2020 (https://www.deeperproject.eu/). A successful candidate should have a PhD in Neuroscience or related fields. Experience with coding (Python or MATLAB) and in vivo experiments including optogenetics, chemogenetics and calcium imaging will be advantageous. In the first instance, candidates may send their application to Dr Shuzo Sakata (shuzo.sakata@strath.ac.uk), including a CV and a cover letter, detailing their motivation for this project and their career goal.

Position

Dr Shuzo Sakata

Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde
Glasgow, UK
Dec 5, 2025

A full-time position of a laboratory technician is available to work with Dr Shuzo Sakata at University of Strathclyde in Glasgow, UK. This position is funded by the Medical Research Council (MRC). Our group has been investigating state-dependent and cell type-specific information processing in the brain by combining a range of techniques, including in vivo high-density electrophysiological recording, calcium imaging, optogenetics, behavioural analysis and computational approaches. In this project, we will investigate how functional interactions between neurons and astrocytes regulate the sleep-wake cycle in mice by utilising state-of-the-art genetic and neurophotonic technologies. This project will also work closely in the context of a recently established international consortium, DEEPER, funded from the EU’s Horizon 2020 (https://www.deeperproject.eu/). This full-time position is expected to assist a wide range of laboratory experiments by working as a team. In the first instance, candidates may send their application to Dr Shuzo Sakata (shuzo.sakata@strath.ac.uk), including a CV and a cover letter, detailing their educational background, lab experience, motivation for this position and their career goal.

PositionNeuroscience

Prof. Carmen Varela

Florida Atlantic University
Jupiter, Florida
Dec 5, 2025

Gain expertise in rodent electrophysiology and behavior studying thalamic cellular and network mechanisms of sleep and memory consolidation. We have several openings to study the mechanisms of synaptic plasticity and cellular spike dynamics that contribute to episodic memory consolidation during sleep. Trainees will gain expertise in systems neuroscience using electrophysiology (cell ensemble and LFP recording) and behavior in rats, as well as expertise on the thalamic molecular and cellular mechanisms underlying normal and disrupted sleep-dependent memory consolidation and the use of non-invasive technologies to regulate them. Some of the projects are part of collaborations with Harvard University and the Scripps Florida Institute.

PositionNeuroscience

Geoffrey J Goodhill

Washington University School of Medicine
St. Louis, MO
Dec 5, 2025

An NIH-funded collaboration between David Prober (Caltech), Thai Truong (USC) and Geoff Goodhill (Washington University in St Louis) aims to gain new insight into the neural circuits underlying sleep, through a combination of whole-brain neural recordings in zebrafish and theoretical/computational modeling. A postdoc position is available in the Goodhill lab to contribute to the modeling and computational analysis components. Using novel 2-photon imaging technologies Prober and Truong are recording from the entire larval zebrafish brain at single-neuron resolution continuously for long periods of time, examining neural circuit activity during normal day-night cycles and in response to genetic and pharmacological perturbations. The Goodhill lab is analyzing the resulting huge datasets using a variety of sophisticated computational approaches, and using these results to build new theoretical models that reveal how neural circuits interact to govern sleep.

Position

N/A

Florida State University; Department of Psychology; Program in Neuroscience
Florida State University
Dec 5, 2025

The Department of Psychology at Florida State University (FSU) invites applicants for a full-time tenure-track Assistant Professor position in BEHAVIORAL/SYSTEMS NEUROSCIENCE. Candidates with lines of laboratory animal research in any area of Neuroscience are encouraged to apply, particularly those who work to understand experience-dependent neural activity in the normal or diseased brain. Such research might include spatial navigation, decision making, and/or learning and memory. FSU is classified as a Carnegie R1 (Highest Research Activities) and ranks in the top 20 of National Public Universities (US News & World Reports). Candidates will find an outstanding research infrastructure with scientific colleagues housed in adjacent buildings, and relatively new laboratory space and vivarium. The department has a fully-staffed electronics and machine shop and faculty have access to core equipment and resources including surgical suites, a confocal microscope and common-use histology/molecular laboratory in the building and numerous other shared resources across the program facilities (see https://www.neuro.fsu.edu/rsrc/cores) and campus (e.g., 21T small animal magnet). Our department has outstanding resources, a favorable teaching load, a high level of research activity, and a collegial atmosphere. The neuroscience community across the state of Florida is also highly collaborative. More information about our department and the Program in Neuroscience can be found at www.psy.fsu.edu and www.neuro.fsu.edu. The University is in Tallahassee, the capital of Florida, where residents have access to a broad range of cultural amenities and an abundance of regional springs, lakes and rivers, and pristine beaches on the Gulf of Mexico. Faculty will be expected to maintain a strong research program, train graduate students in the Interdisciplinary Program in Neuroscience, and have the potential for excellent teaching and mentoring of diverse student populations for undergraduate and graduate neuroscience courses in the Psychology Department. A doctoral degree is required. Applicants with a demonstrated commitment to expanding access to neuroscience through their program of research are encouraged to apply. To apply, go to http://www.jobs.fsu.edu (Job ID 58629) and submit: (1) a cover letter, (2) a curriculum vitae, (3) a research statement, (4) a teaching statement, and (5) up to four peer-reviewed papers, and (6) the names and contact information for writers for 3 letters of recommendation. Application review will begin on October 30, 2024. FSU is an Equal Opportunity/Access/Affirmative Action/Pro Disabled & Veteran Employer committed to enhancing the diversity of its faculty and students. Statement can be accessed at: https://hr.fsu.edu/sites/g/files/upcbnu2186/files/PDF/Publications/diversity/EEO_Statement.pdf. Inquiries about the position may be directed to Aaron Wilber, Search Chair, at awilber@fsu.edu.

Position

N/A

Florida State University; Department of Psychology; Program in Neuroscience
Florida State University
Dec 5, 2025

The Department of Psychology at Florida State University (FSU) invites applicants for a full-time tenure-track Assistant Professor position in BEHAVIORAL/SYSTEMS NEUROSCIENCE. Candidates with lines of laboratory animal research in any area of Neuroscience are encouraged to apply, particularly those who work to understand experience-dependent neural activity in the normal or diseased brain. Such research might include spatial navigation, decision making, and/or learning and memory. FSU is classified as a Carnegie R1 (Highest Research Activities) and ranks in the top 20 of National Public Universities (US News & World Reports). Candidates will find an outstanding research infrastructure with scientific colleagues housed in adjacent buildings, and relatively new laboratory space and vivarium. The department has a fully-staffed electronics and machine shop and faculty have access to core equipment and resources including surgical suites, a confocal microscope and common-use histology/molecular laboratory in the building and numerous other shared resources across the program facilities (see https://www.neuro.fsu.edu/rsrc/cores) and campus (e.g., 21T small animal magnet). Our department has outstanding resources, a favorable teaching load, a high level of research activity, and a collegial atmosphere. The neuroscience community across the state of Florida is also highly collaborative. More information about our department and the Program in Neuroscience can be found at www.psy.fsu.edu and www.neuro.fsu.edu. The University is in Tallahassee, the capital of Florida, where residents have access to a broad range of cultural amenities and an abundance of regional springs, lakes and rivers, and pristine beaches on the Gulf of Mexico. Faculty will be expected to maintain a strong research program, train graduate students in the Interdisciplinary Program in Neuroscience, and have the potential for excellent teaching and mentoring of diverse student populations for undergraduate and graduate neuroscience courses in the Psychology Department. A doctoral degree is required. Applicants with a demonstrated commitment to expanding access to neuroscience through their program of research are encouraged to apply. To apply, go to http://www.jobs.fsu.edu (Job ID 58629) and submit: (1) a cover letter, (2) a curriculum vitae, (3) a research statement, (4) a teaching statement, and (5) up to four peer-reviewed papers, and (6) the names and contact information for writers for 3 letters of recommendation. Application review will begin on October 30, 2024. FSU is an Equal Opportunity/Access/Affirmative Action/Pro Disabled & Veteran Employer committed to enhancing the diversity of its faculty and students. Statement can be accessed at: https://hr.fsu.edu/sites/g/files/upcbnu2186/files/PDF/Publications/diversity/EEO_Statement.pdf. Inquiries about the position may be directed to Aaron Wilber, Search Chair, at awilber@fsu.edu.

Position

Eleonora Russo

University of Bristol, Sant’Anna School of Advanced Studies
University of Bristol, Bristol, UK
Dec 5, 2025

The University of Bristol is pleased to offer a fully-funded PhD position to study the processing of traumatic memories during sleep using advanced machine learning techniques. The successful candidate will be supervised by an interdisciplinary team of experimental and computational neuroscientists, including Dr. Ross Purple, Dr. Sean Froudist-Walsh, and Dr. Eleonora Russo. This project will also involve collaboration with the Sant’Anna School of Advanced Studies in Pisa, Italy.

PositionNeuroscience

Assistant Professor Yao Chen

WashU Medicine
St. Louis, United States
Dec 5, 2025

Research Assistant - Neuroscience Dr. Yao Chen’s interdisciplinary lab in the Department of Neuroscience at Washington University School of Medicine is seeking a highly motivated, hardworking, and intellectually curious individual for a full-time Research Assistant position. Our lab aims to understand how biochemical signaling dynamics contribute to neuromodulator actions, learning, and mechanisms of sleep functions through basic research of the mouse brain. We are looking for a fearless, proactive individual who is receptive to feedback and eager to grow scientifically, technically, and personally. The successful candidate may have the opportunity to lead projects with guidance from the Principal Investigator (PI) and in collaboration with other lab members. The applicant will receive training and support on research design, experimental execution, and data interpretation. The PI is committed to nurturing a creative, collaborative, and supportive lab culture. Washington University neuroscience is ranked among the top 10 in the world. The School of Medicine is ranked among the top 5 medical schools in the United States.

SeminarNeuroscience

Organization of thalamic networks and mechanisms of dysfunction in schizophrenia and autism

Vasileios Zikopoulos
Boston University
Nov 2, 2025

Thalamic networks, at the core of thalamocortical and thalamosubcortical communications, underlie processes of perception, attention, memory, emotions, and the sleep-wake cycle, and are disrupted in mental disorders, including schizophrenia and autism. However, the underlying mechanisms of pathology are unknown. I will present novel evidence on key organizational principles, structural, and molecular features of thalamocortical networks, as well as critical thalamic pathway interactions that are likely affected in disorders. This data can facilitate modeling typical and abnormal brain function and can provide the foundation to understand heterogeneous disruption of these networks in sleep disorders, attention deficits, and cognitive and affective impairments in schizophrenia and autism, with important implications for the design of targeted therapeutic interventions

SeminarNeuroscience

Neural circuits underlying sleep structure and functions

Antoine Adamantidis
University of Bern
Jun 12, 2025

Sleep is an active state critical for processing emotional memories encoded during waking in both humans and animals. There is a remarkable overlap between the brain structures and circuits active during sleep, particularly rapid eye-movement (REM) sleep, and the those encoding emotions. Accordingly, disruptions in sleep quality or quantity, including REM sleep, are often associated with, and precede the onset of, nearly all affective psychiatric and mood disorders. In this context, a major biomedical challenge is to better understand the underlying mechanisms of the relationship between (REM) sleep and emotion encoding to improve treatments for mental health. This lecture will summarize our investigation of the cellular and circuit mechanisms underlying sleep architecture, sleep oscillations, and local brain dynamics across sleep-wake states using electrophysiological recordings combined with single-cell calcium imaging or optogenetics. The presentation will detail the discovery of a 'somato-dendritic decoupling'in prefrontal cortex pyramidal neurons underlying REM sleep-dependent stabilization of optimal emotional memory traces. This decoupling reflects a tonic inhibition at the somas of pyramidal cells, occurring simultaneously with a selective disinhibition of their dendritic arbors selectively during REM sleep. Recent findings on REM sleep-dependent subcortical inputs and neuromodulation of this decoupling will be discussed in the context of synaptic plasticity and the optimization of emotional responses in the maintenance of mental health.

SeminarNeuroscience

SRF | Dreem EEG Headband to Assess Sleep EEG Biomarkers in SYNGAP1

Dr. Jay Pathmanathan
Beacon Biosignals
Feb 5, 2025
SeminarNeuroscience

How do we sleep?

William Wisden
Dept Life Sciences & UK Dementia Research Institute, Imperial College London, UK
Nov 27, 2024

There is no consensus on if sleep is for the brain, body or both. But the difference in how we feel following disrupted sleep or having a good night of continuous sleep is striking. Understanding how and why we sleep will likely give insights into many aspects of health. In this talk I will outline our recent work on how the prefrontal cortex can signal to the hypothalamus to regulate sleep preparatory behaviours and sleep itself, and how other brain regions, including the ventral tegmental area, respond to psychosocial stress to induce beneficial sleep. I will also outline our work on examining the function of the glymphatic system, and whether clearance of molecules from the brain is enhanced during sleep or wakefulness.

SeminarNeuroscience

Consciousness: From theory to practice

Giulio Tononi
Wisconsin Institute for Sleep and Consciousness, University of Madison-Wisconsin
May 15, 2024
SeminarNeuroscience

Learning representations of specifics and generalities over time

Anna Schapiro
University of Pennsylvania
Apr 11, 2024

There is a fundamental tension between storing discrete traces of individual experiences, which allows recall of particular moments in our past without interference, and extracting regularities across these experiences, which supports generalization and prediction in similar situations in the future. One influential proposal for how the brain resolves this tension is that it separates the processes anatomically into Complementary Learning Systems, with the hippocampus rapidly encoding individual episodes and the neocortex slowly extracting regularities over days, months, and years. But this does not explain our ability to learn and generalize from new regularities in our environment quickly, often within minutes. We have put forward a neural network model of the hippocampus that suggests that the hippocampus itself may contain complementary learning systems, with one pathway specializing in the rapid learning of regularities and a separate pathway handling the region’s classic episodic memory functions. This proposal has broad implications for how we learn and represent novel information of specific and generalized types, which we test across statistical learning, inference, and category learning paradigms. We also explore how this system interacts with slower-learning neocortical memory systems, with empirical and modeling investigations into how the hippocampus shapes neocortical representations during sleep. Together, the work helps us understand how structured information in our environment is initially encoded and how it then transforms over time.

SeminarNeuroscience

How do our thoughts, imaginations and intentions influence sleep?

Björn Rasch
University of Fribourg, Switzerland
Jan 28, 2024
SeminarNeuroscienceRecording

Location, time and type of epileptic activity influence how sleep modulates epilepsy

Birgit Frauscher
Duke
Oct 10, 2023

Sleep and epilepsy are tightly interconnected: On the one hand disturbed sleep is known to negatively affect epilepsy, whereas on the other hand epilepsy negatively impacts sleep. In this talk, we leverage on the unique opportunity provided by simultaneous stereo-EEG and sleep recordings to disentangle these relationships. We will discuss latest evidence on if anatomy (temporal vs. extratemporal), time (early vs. late sleep), and type of epileptic activity (ictal vs. interictal) influence how epileptic activity is modulated by sleep. After this talk, attendees will have a more nuanced understanding of the contributions of location, time and type of epileptic activity in the relationship between sleep and epilepsy.

SeminarNeuroscience

How Intermittent Bioenergetic Challenges Enhance Brain and Body Health

Mark Mattson
Johns Hopkins University School of Medicine
Sep 25, 2023

Humans and other animals evolved in habitats fraught with a range of environmental challenges to their bodies and brains. Accordingly, cells and organ systems possess adaptive stress-responsive signaling pathways that enable them to not only withstand environmental challenges, but also to prepare for future challenges and function more efficiently. These phylogenetically conserved processes are the foundation of the hormesis principle in which repeated exposures to low to moderate amounts of an environmental challenge improve cellular and organismal fitness. Here I describe cellular and molecular mechanisms by which cells in the brain and body respond to intermittent fasting and exercise in ways that enhance performance and counteract aging and disease processes. Switching back and forth between adaptive stress response (during fasting and exercise) and growth and plasticity (eating, resting, sleeping) modes enhances the performance and resilience of various organ systems. While pharmacological interventions that engage a particular hormetic mechanism are being developed, it seems unlikely that any will prove superior to fasting and exercise.

SeminarNeuroscience

Sleep deprivation and the human brain: from brain physiology to cognition”

Ali Salehinejad
Leibniz Research Centre for Working Environment & Human Factors, Dortmund, Germany
Aug 28, 2023

Sleep strongly affects synaptic strength, making it critical for cognition, especially learning and memory formation. Whether and how sleep deprivation modulates human brain physiology and cognition is poorly understood. Here we examined how overnight sleep deprivation vs overnight sufficient sleep affects (a) cortical excitability, measured by transcranial magnetic stimulation, (b) inducibility of long-term potentiation (LTP)- and long-term depression (LTD)-like plasticity via transcranial direct current stimulation (tDCS), and (c) learning, memory, and attention. We found that sleep deprivation increases cortical excitability due to enhanced glutamate-related cortical facilitation and decreases and/or reverses GABAergic cortical inhibition. Furthermore, tDCS-induced LTP-like plasticity (anodal) abolishes while the inhibitory LTD-like plasticity (cathodal) converts to excitatory LTP-like plasticity under sleep deprivation. This is associated with increased EEG theta oscillations due to sleep pressure. Motor learning, behavioral counterparts of plasticity, and working memory and attention, which rely on cortical excitability, are also impaired during sleep deprivation. Our study indicates that upscaled brain excitability and altered plasticity, due to sleep deprivation, are associated with impaired cognitive performance. Besides showing how brain physiology and cognition undergo changes (from neurophysiology to higher-order cognition) under sleep pressure, the findings have implications for variability and optimal application of noninvasive brain stimulation.

SeminarNeuroscience

REM sleep and the energy allocation hypothesis”

Markus H. Schmidt
Center for Experimental Neurology (ZEN), Insel Hospital, Berne, Switzerland
Feb 8, 2023
SeminarNeuroscienceRecording

Sampling the environment with body-brain rhythms

Antonio Criscuolo
Maastricht University
Jan 24, 2023

Since Darwin, comparative research has shown that most animals share basic timing capacities, such as the ability to process temporal regularities and produce rhythmic behaviors. What seems to be more exclusive, however, are the capacities to generate temporal predictions and to display anticipatory behavior at salient time points. These abilities are associated with subcortical structures like basal ganglia (BG) and cerebellum (CE), which are more developed in humans as compared to nonhuman animals. In the first research line, we investigated the basic capacities to extract temporal regularities from the acoustic environment and produce temporal predictions. We did so by adopting a comparative and translational approach, thus making use of a unique EEG dataset including 2 macaque monkeys, 20 healthy young, 11 healthy old participants and 22 stroke patients, 11 with focal lesions in the BG and 11 in the CE. In the second research line, we holistically explore the functional relevance of body-brain physiological interactions in human behavior. Thus, a series of planned studies investigate the functional mechanisms by which body signals (e.g., respiratory and cardiac rhythms) interact with and modulate neurocognitive functions from rest and sleep states to action and perception. This project supports the effort towards individual profiling: are individuals’ timing capacities (e.g., rhythm perception and production), and general behavior (e.g., individual walking and speaking rates) influenced / shaped by body-brain interactions?

SeminarNeuroscience

Gut food cravings? How gut signals control appetite and metabolism

Kim Rewitz
University of Copenhagen
Nov 21, 2022

Gut-derived signals regulate metabolism, appetite, and behaviors important for mental health. We have performed a large-scale multidimensional screen to identify gut hormones and nutrient-sensing mechanisms in the intestine that regulate metabolism and behavior in the fruit fly Drosophila. We identified several gut hormones that affect fecundity, stress responses, metabolism, feeding, and sleep behaviors, many of which seem to act sex-specifically. We show that in response to nutrient intake, the enteroendocrine cells (EECs) of the adult Drosophila midgut release hormones that act via inter-organ relays to coordinate metabolism and feeding decisions. These findings suggest that crosstalk between the gut and other tissues regulates food choice according to metabolic needs, providing insight into how that intestine processes nutritional inputs and into the gut-derived signals that relay information regulating nutrient-specific hungers to maintain metabolic homeostasis.

SeminarNeuroscience

Sleep, development and chromatin regulation in autism

Lucia Peixoto
Washington State University
Sep 27, 2022
SeminarNeuroscience

Internally Organized Abstract Task Maps in the Mouse Medial Frontal Cortex

Mohamady El-Gaby
University of Oxford
Sep 27, 2022

New tasks are often similar in structure to old ones. Animals that take advantage of such conserved or “abstract” task structures can master new tasks with minimal training. To understand the neural basis of this abstraction, we developed a novel behavioural paradigm for mice: the “ABCD” task, and recorded from their medial frontal neurons as they learned. Animals learned multiple tasks where they had to visit 4 rewarded locations on a spatial maze in sequence, which defined a sequence of four “task states” (ABCD). Tasks shared the same circular transition structure (… ABCDABCD …) but differed in the spatial arrangement of rewards. As well as improving across tasks, mice inferred that A followed D (i.e. completed the loop) on the very first trial of a new task. This “zero-shot inference” is only possible if animals had learned the abstract structure of the task. Across tasks, individual medial Frontal Cortex (mFC) neurons maintained their tuning to the phase of an animal’s trajectory between rewards but not their tuning to task states, even in the absence of spatial tuning. Intriguingly, groups of mFC neurons formed modules of coherently remapping neurons that maintained their tuning relationships across tasks. Such tuning relationships were expressed as replay/preplay during sleep, consistent with an internal organisation of activity into multiple, task-matched ring attractors. Remarkably, these modules were anchored to spatial locations: neurons were tuned to specific task space “distances” from a particular spatial location. These newly discovered “Spatially Anchored Task clocks” (SATs), suggest a novel algorithm for solving abstraction tasks. Using computational modelling, we show that SATs can perform zero-shot inference on new tasks in the absence of plasticity and guide optimal policy in the absence of continual planning. These findings provide novel insights into the Frontal mechanisms mediating abstraction and flexible behaviour.

SeminarNeuroscienceRecording

Extrinsic control and intrinsic computation in the hippocampal CA1 network

Ipshita Zutshi
Buzsáki Lab, NYU
Jul 5, 2022

A key issue in understanding circuit operations is the extent to which neuronal spiking reflects local computation or responses to upstream inputs. Several studies have lesioned or silenced inputs to area CA1 of the hippocampus - either area CA3 or the entorhinal cortex and examined the effect on CA1 pyramidal cells. However, the types of the reported physiological impairments vary widely, primarily because simultaneous manipulations of these redundant inputs have never been performed. In this study, I combined optogenetic silencing of unilateral and bilateral mEC, of the local CA1 region, and performed bilateral pharmacogenetic silencing of CA3. I combined this with high spatial resolution extracellular recordings along the CA1-dentate axis. Silencing the medial entorhinal largely abolished extracellular theta and gamma currents in CA1, without affecting firing rates. In contrast, CA3 and local CA1 silencing strongly decreased firing of CA1 neurons without affecting theta currents. Each perturbation reconfigured the CA1 spatial map. Yet, the ability of the CA1 circuit to support place field activity persisted, maintaining the same fraction of spatially tuned place fields. In contrast to these results, unilateral mEC manipulations that were ineffective in impacting place cells during awake behavior were found to alter sharp-wave ripple sequences activated during sleep. Thus, intrinsic excitatory-inhibitory circuits within CA1 can generate neuronal assemblies in the absence of external inputs, although external synaptic inputs are critical to reconfigure (remap) neuronal assemblies in a brain-state dependent manner.

SeminarNeuroscience

Sleep and its role in the recovery from plastic activities

Chiara Cirelli
University of Wisconsin, Madison, Center for Sleep and Consciousness
Jun 22, 2022
SeminarNeuroscience

Light-induced moderations in vitality and sleep in the field

Karin C. H. J. Smolders
Eindhoven University of Technology
May 18, 2022

Retinal light exposure is modulated by our behavior, and light exposure patterns show strong variations within and between persons. Yet, most laboratory studies investigated influences of constant lighting settings on human daytime functioning and sleep. In this presentation, I will discuss a series of studies investigating light-induced moderations in sleepiness, vitality and sleep, with a strong focus on the temporal dynamics in these effects, and the bi-directional relation between persons' light profiles and their behavior.

SeminarNeuroscience

Neural mechanisms for memory and emotional processing during sleep

Gabrielle Girardeau
INSERM, Institut du Fer à Moulin, Paris, France
May 18, 2022
SeminarNeuroscience

Multimodal investigation of the associations between sleep and Alzheimer's disease neuropathology in healthy individuals

Gilles Vandewalle
University of Liège, Belgium
May 9, 2022

Alterations in sleep are hallmarks of the ageing process and emerges as risk factors for Alzheimer’s disease (AD). While the fine-tuned coalescence of sleep microstructure elements may influence age-related cognitive trajectories, its association with AD-related processes is not fully established. We investigated whether sleep arousals and the coupling of spindles and slow waves, key elements of sleep microstructure, are associated with early amyloid-beta (Aβ) brain burden, hallmark of AD neuropathology, and cognitive change at 2 years in 100 late-midlife healthy individuals. We first found that arousals interrupting sleep continuity were positively linked to Aβ burden, while, by contrast, the more prevalent arousals upholding sleep continuity were associated with lower Aβ burden and better cognition. We further found that young-like co-occurrence of spindles and slow-depolarisation slow waves is associated to lower burden of Aβ over the medial prefrontal cortex and is predictive of memory decline at 2-year follow-up. We provide empirical evidence that arousals are diverse and differently associated with early AD-related neuropathology and cognition. We further show the altered coupling of sleep microstructure elements that are key to its mnesic functions may contribute to poorer brain and cognitive trajectories. The presentation will end with preliminary data show that activity of the locus coeruleus, essential to sleep and showing some of the earliest signs of AD-related pathological processes, is associated with sleep quality. These preliminary findings are the first of a project ailed at link sleep and AD through the locus coeruleus.

SeminarOpen SourceRecording

Open-source neurotechnologies for imaging cortex-wide neural activity in behaving animals

Suhasa Kodandaramaiah
University of Minnesota
May 3, 2022

Neural computations occurring simultaneously in multiple cerebral cortical regions are critical for mediating behaviors. Progress has been made in understanding how neural activity in specific cortical regions contributes to behavior. However, there is a lack of tools that allow simultaneous monitoring and perturbing neural activity from multiple cortical regions. We have engineered a suite of technologies to enable easy, robust access to much of the dorsal cortex of mice for optical and electrophysiological recordings. First, I will describe microsurgery robots that can programmed to perform delicate microsurgical procedures such as large bilateral craniotomies across the cortex and skull thinning in a semi-automated fashion. Next, I will describe digitally designed, morphologically realistic, transparent polymer skulls that allow long-term (+300 days) optical access. These polymer skulls allow mesoscopic imaging, as well as cellular and subcellular resolution two-photon imaging of neural structures up to 600 µm deep. We next engineered a widefield, miniaturized, head-mounted fluorescence microscope that is compatible with transparent polymer skull preparations. With a field of view of 8 × 10 mm2 and weighing less than 4 g, the ‘mini-mScope’ can image most of the mouse dorsal cortex with resolutions ranging from 39 to 56 µm. We used the mini-mScope to record mesoscale calcium activity across the dorsal cortex during sensory-evoked stimuli, open field behaviors, social interactions and transitions from wakefulness to sleep.

SeminarNeuroscience

The impact of spaceflight on sleep and circadian rhythms

Erin E. Flynn-Evans
NASA Ames Research Center (USA)
Apr 27, 2022

What happens to human sleep and circadian rhythms in space? There are many challenges that affect sleep in space, including unusual patterns of light exposure and the influence of microgravity. This talk will review the causes and consequences of sleep loss and circadian misalignment during spaceflight and will discuss how missions to the Moon and Mars will be different than missions to the International Space Station.

SeminarNeuroscience

Neuromodulation of sleep integrity

Luís de Lecea
Stanford University
Apr 11, 2022

The arousal construct underlies a spectrum of behaviors that include sleep, exploration, feeding, sexual activity and adaptive stress. Pathological arousal conditions include stress, anxiety disorders, and addiction. The dynamics between arousal state transitions are modulated by norepinephrine neurons in the locus coeruleus, histaminergic neurons in the hypothalamus, dopaminergic neurons in the mesencephalon and cholinergic neurons in the basal forebrain. The hypocretin/orexin system in the lateral hypothalamus I will also present a new mechanism underlying sleep fragmentation during aging. Hcrt neurons are hyperexcitable in aged mice. We identify a potassium conductance known as the M-current, as a critical player in maintaining excitability of Hcrt neurons. Genetic disruption of KCNQ channels in Hcrt neurons of young animals results in sleep fragmentation. In contrast, treatment of aged animals with a KCNQ channel opener restores sleep/wake architecture. These data point to multiple circuits modulating sleep integrity across lifespan.

SeminarNeuroscience

Lifestyle, cardiovascular health, and the brain

Filip Swirski
Icahn School of Medicine, MOUNT SINAI, NEW YORK, NY, USA
Mar 28, 2022

Lifestyle factors such as sleep, diet, stress, and exercise, profoundly influence cardiovascular health. Seeking to understand how lifestyle affects our biology is important for at least two reasons. First, it can expose a particular lifestyle’s biological impact, which can be leveraged for adopting specific public health policies. Second, such work may identify crucial molecular mechanisms central to how the body adapts to our environments. These insights can then be used to improve our lives. In this talk, I will focus on recent work in the lab exploring how lifestyle factors influence cardiovascular health. I will show how combining tools of neuroscience, hematology, immunology, and vascular biology helps us better understand how the brain shapes leukocytes in response to environmental perturbations. By “connecting the dots” from the brain to the vessel wall, we can begin to elucidate how lifestyle can both maintain and perturb salutogenesis.

SeminarNeuroscience

The neuroscience of lifestyle interventions for mental health: the BrainPark approach

Rebecca Segrave and Chao Suo
Monash University
Mar 15, 2022

Our everyday behaviours, such as physical activity, sleep, diet, meditation, and social connections, have a potent impact on our mental health and the health of our brain. BrainPark is working to harness this power by developing lifestyle-based interventions for mental health and investigating how they do and don’t change the brain, and for whom they are most effective. In this webinar, Dr Rebecca Segrave and Dr Chao Suo will discuss BrainPark’s approach to developing lifestyle-based interventions to help people get better control of compulsive behaviours, and the multi-modality neuroimaging approaches they take to investigating outcomes. The webinar will explore two current BrainPark trials: 1. Conquering Compulsions - investigating the capacity of physical exercise and meditation to alter reward processing and help people get better control of a wide range of unhelpful habits, from drinking to eating to cleaning. 2. The Brain Exercise Addiction Trial (BEAT) - an NHMRC funded investigation into the capacity of physical exercise to reverse the brain harms caused by long-term heavy cannabis use. Dr Rebecca Segrave is Deputy Director and Head of Interventions Research at BrainPark, the David Winston Turner Senior Research Fellow within the Turner Institute for Brain and Mental Health, and an AHRPA registered Clinical Neuropsychologist. Dr Chao Suo is Head of Technology and Neuroimaging at BrainPark and a Research Fellow within the Turner Institute for Brain and Mental Health.

SeminarNeuroscience

How sleep contributes to visual perceptual learning

Masako Tamaki
RIKEN CBS
Mar 10, 2022

Sleep is crucial for the continuity and development of life. Sleep-related problems can alter brain function, and cause potentially severe psychological and behavioral consequences. However, the role of sleep in our mind and behavior is far from clear. In this talk, I will present our research on how sleep may play a role in visual perceptual learning (VPL) by using simultaneous magnetic resonance spectroscopy and polysomnography in human subjects. We measured the concentrations of neurotransmitters in the early visual areas during sleep and obtained the excitation/inhibition (E/I) ratio which represents the amount of plasticity in the visual system. We found that the E/I ratio significantly increased during NREM sleep while it decreased during REM sleep. The E/I ratio during NREM sleep was correlated with offline performance gains by sleep, while the E/I ratio during REM sleep was correlated with the amount of learning stabilization. These suggest that NREM sleep increases plasticity, while REM sleep decreases it to solidify once enhanced learning. NREM and REM sleep may play complementary roles, reflected by significantly different neurochemical processing, in VPL.

SeminarNeuroscience

The Brain Conference (the Guarantors of Brain)

Programme of speakers
The Guarantors of Brain
Feb 24, 2022

Join the Brain Conference on 24-25 February 2022 for the opportunity to hear from neurology’s leading scientists and clinicians. The two-day virtual programme features clinical teaching talks and research presentations from expert speakers including neuroscientist Professor Gina Poe, and the winner of the 2021 Brain Prize, neurologist Professor Peter Goadsby." "Tickets for The Brain Conference 2022 cost just £30, but register with promotional code BRAINCONEM20 for a discounted rate of £25.

SeminarNeuroscienceRecording

CNStalk: Being awake while asleep, being asleep while awake

Thomas Andrillon
The Brain and Spinal Cord Institute
Feb 23, 2022
SeminarNeuroscience

The Brain Conference (the Guarantors of Brain)

Programme of speakers
The Guarantors of Brain
Feb 23, 2022

Join the Brain Conference on 24-25 February 2022 for the opportunity to hear from neurology’s leading scientists and clinicians. The two-day virtual programme features clinical teaching talks and research presentations from expert speakers including neuroscientist Professor Gina Poe, and the winner of the 2021 Brain Prize, neurologist Professor Peter Goadsby." "Tickets for The Brain Conference 2022 cost just £30, but register with promotional code BRAINCONEM20 for a discounted rate of £25.

SeminarPsychology

Leadership Support and Workplace Psychosocial Stressors

Leslie B. Hammer
Portland State University
Feb 22, 2022

Research evidence indicates that psychosocial stressors such as work-life stress serves as a negative occupational exposure relating to poor health behaviors including smoking, poor food choices, low levels of exercise, and even decreased sleep time, as well as a number of chronic health outcomes. The association between work-life stress and adverse health behaviors and chronic health suggests that Occupational Health Psychology (OHP) interventions such as leadership support trainings may be helpful in mitigating effects of work-life stress and improving health, consistent with the Total Worker Health approach. This presentation will review workplace psychosocial stressors and leadership training approaches to reduces stress and improve health, highlighting a randomized controlled trial, the Military Employee Sleep and Health study.

SeminarNeuroscience

Keeping your Brain in Balance: the Ups and Downs of Homeostatic Plasticity (virtual)

Gina Turrigiano, PhD
Professor, Department of Biology, Brandeis University, USA
Feb 16, 2022

Our brains must generate and maintain stable activity patterns over decades of life, despite the dramatic changes in circuit connectivity and function induced by learning and experience-dependent plasticity. How do our brains acheive this balance between opposing need for plasticity and stability? Over the past two decades, we and others have uncovered a family of “homeostatic” negative feedback mechanisms that are theorized to stabilize overall brain activity while allowing specific connections to be reconfigured by experience. Here I discuss recent work in which we demonstrate that individual neocortical neurons in freely behaving animals indeed have a homeostatic activity set-point, to which they return in the face of perturbations. Intriguingly, this firing rate homeostasis is gated by sleep/wake states in a manner that depends on the direction of homeostatic regulation: upward-firing rate homeostasis occurs selectively during periods of active wake, while downward-firing rate homeostasis occurs selectively during periods of sleep, suggesting that an important function of sleep is to temporally segregate bidirectional plasticity. Finally, we show that firing rate homeostasis is compromised in an animal model of autism spectrum disorder. Together our findings suggest that loss of homeostatic plasticity in some neurological disorders may render central circuits unable to compensate for the normal perturbations induced by development and learning.

SeminarNeuroscience

Dissecting sleep-wake circuitries in health and disease

Carolina Gutierrez Herrera
Inselspital Bern, Center for Experimental Neurology (ZEN), Switzerland
Feb 16, 2022
SeminarNeuroscienceRecording

Why is the suprachiasmatic nucleus such a brilliant circadian time-keeper?

Michael Hastings
MRC Laboratory of Molecular Biology, Cambridge
Feb 7, 2022

Circadian clocks dominate our lives. By creating and distributing an internal representation of 24-hour solar time, they prepare us, and thereby adapt us, to the daily and seasonal world. Jet-lag is an obvious indicator of what can go wrong when such adaptation is disrupted acutely. More seriously, the growing prevalence of rotational shift-work which runs counter to our circadian life, is a significant chronic challenge to health, presenting as increased incidence of systemic conditions such as metabolic and cardiovascular disease. Added to this, circadian and sleep disturbances are a recognised feature of various neurological and psychiatric conditions, and in some cases may contribute to disease progression. The “head ganglion” of the circadian system is the suprachiasmatic nucleus (SCN) of the hypothalamus. It synchronises the, literally, innumerable cellular clocks across the body, to each other and to solar time. Isolated in organotypic slice culture, it can maintain precise, high-amplitude circadian cycles of neural activity, effectively, indefinitely, just as it does in vivo. How is this achieved: how does this clock in a dish work? This presentation will consider SCN time-keeping at the level of molecular feedback loops, neuropeptidergic networks and neuron-astrocyte interactions.

SeminarNeuroscience

Heartbeat-based auditory regularities induce prediction in human wakefulness and sleep

Marzia de Lucia
Laboratoire de Recherche en Neuroimagerie (LREN), University Hospital (CHUV) and University of Lausanne (UNIL)
Feb 7, 2022

Exposure to sensory regularities in the environment induces the human brain to form expectations about incoming stimuli and remains partially preserved in the absence of consciousness (i.e. coma and sleep). While regularity often refers to stimuli presented at a fixed pace, we recently explored whether auditory prediction extends to pseudo-regular sequences where sensory prediction is induced by locking sound onsets to heartbeat signals and whether it can occur across vigilance states. In a series of experiments in healthy volunteers, we found neural and cardiac evidence of auditory prediction during heartbeat-based auditory regularities in wakefulness and N2 sleep. This process could represent an important mechanism for detecting unexpected stimuli in the environment even in states of limited conscious and attentional resources.

SeminarNeuroscience

Online "From Bench to Bedside" Neurosciences Symposium

Anissa Kempf (BZ), Prof. Urs Fischer (USB)
Feb 3, 2022

2 Keynote lectures :“Homeostatic control of sleep in the fly"and “Management of Intracerebral Haemorrhage – where is the evidence?” and 2 sessions: "Cortical top-down information processing” and “Virtual/augmented reality and its implications for the clinic”

SeminarNeuroscience

The circadian clock and neural circuits maintaining body fluid homeostasis

Charles BOURQUE
Professor, Department of Neurology-Neurosurgery, McGill University
Jan 9, 2022

Neurons in the suprachiasmatic nucleus (SCN, the brain’s master circadian clock) display a 24 hour cycle in the their rate of action potential discharge whereby firing rates are high during the light phase and lower during the dark phase. Although it is generally agreed that this cycle of activity is a key mediator of the clock’s neural and humoral output, surprisingly little is known about how changes in clock electrical activity can mediate scheduled physiological changes at different times of day. Using opto- and chemogenetic approaches in mice we have shown that the onset of electrical activity in vasopressin releasing SCN neurons near Zeitgeber time 22 (ZT22) activates glutamatergic thirst-promoting neurons in the OVLT (organum vasculosum lamina terminalis) to promote water intake prior to sleep. This effect is mediated by activity-dependent release of vasopressin from the axon terminals of SCN neurons which acts as a neurotransmitter on OVLT neurons. More recently we found that the clock receives excitatory input from a different subset of sodium sensing neurons in the OVLT. Activation of these neurons by a systemic salt load delivered at ZT19 stimulated the electrical activity of SCN neurons which are normally silent at this time. Remarkably, this effect induced an acute reduction in non-shivering thermogenesis and body temperature, which is an adaptive response to the salt load. These findings provide information regarding the mechanisms by which the SCN promotes scheduled physiological rhythms and indicates that the clock’s output circuitry can also be recruited to mediate an unscheduled homeostatic response.

SeminarNeuroscienceRecording

Mechanisms of sleep-seizure interactions in tuberous sclerosis and other mTORpathies

Michael Wong
Washigton University
Jan 4, 2022

An intriguing, relatively unexplored therapeutic avenue to investigate epilepsy is the interaction of sleep mechanisms and seizures. Multiple lines of clinical observations suggest a strong, bi-directional relationship between epilepsy and sleep. Epilepsy and sleep disorders are common comorbidities. Seizures occur more commonly in sleep in many types of epilepsy, and in turn, seizures can cause disrupted sleep. Sudden unexplained death in epilepsy (SUDEP) is strongly associated with sleep. The biological mechanisms underlying this relationship between seizures and sleep are poorly understood, but if better delineated, could offer novel therapeutic approaches to treating both epilepsy and sleep disorders. In this presentation, I will explore this sleep-seizure relationship in mouse models of epilepsy. First, I will present general approaches for performing detailed longitudinal sleep and vigilance state analysis in mice, including pre-weanling neonatal mice. I will then discuss recent data from my laboratory demonstrating an abnormal sleep phenotype in a mouse model of the genetic epilepsy, tuberous sclerosis complex (TSC), and its relationship to seizures. The potential mechanistic basis of sleep abnormalities and sleep-seizure interactions in this TSC model will be investigated, focusing on the role of the mechanistic target of rapamycin (mTOR) pathway and hypothalamic orexin, with potential therapeutic applications of mTOR inhibitors and orexin antagonists. Finally, similar sleep-seizure interactions and mechanisms will be extended to models of acquired epilepsy due to status epilepticus-related brain injury.

SeminarNeuroscienceRecording

Inferring informational structures in neural recordings of drosophila with epsilon-machines

Roberto Muñoz
Monash University
Dec 9, 2021

Measuring the degree of consciousness an organism possesses has remained a longstanding challenge in Neuroscience. In part, this is due to the difficulty of finding the appropriate mathematical tools for describing such a subjective phenomenon. Current methods relate the level of consciousness to the complexity of neural activity, i.e., using the information contained in a stream of recorded signals they can tell whether the subject might be awake, asleep, or anaesthetised. Usually, the signals stemming from a complex system are correlated in time; the behaviour of the future depends on the patterns in the neural activity of the past. However these past-future relationships remain either hidden to, or not taken into account in the current measures of consciousness. These past-future correlations are likely to contain more information and thus can reveal a richer understanding about the behaviour of complex systems like a brain. Our work employs the "epsilon-machines” framework to account for the time correlations in neural recordings. In a nutshell, epsilon-machines reveal how much of the past neural activity is needed in order to accurately predict how the activity in the future will behave, and this is summarised in a single number called "statistical complexity". If a lot of past neural activity is required to predict the future behaviour, then can we say that the brain was more “awake" at the time of recording? Furthermore, if we read the recordings in reverse, does the difference between forward and reverse-time statistical complexity allow us to quantify the level of time asymmetry in the brain? Neuroscience predicts that there should be a degree of time asymmetry in the brain. However, this has never been measured. To test this, we used neural recordings measured from the brains of fruit flies and inferred the epsilon-machines. We found that the nature of the past and future correlations of neural activity in the brain, drastically changes depending on whether the fly was awake or anaesthetised. Not only does our study find that wakeful and anaesthetised fly brains are distinguished by how statistically complex they are, but that the amount of correlations in wakeful fly brains was much more sensitive to whether the neural recordings were read forward vs. backwards in time, compared to anaesthetised brains. In other words, wakeful fly brains were more complex, and time asymmetric than anaesthetised ones.

SeminarNeuroscience

Brain circuit dynamics in Action and Sleep

Gilles Laurent
Max Planck Institute for Brain Research, Frankfurt, Germany
Dec 2, 2021

Our group focuses on brain computation, physiology and evolution, with a particular focus on network dynamics, sleep (evolution and mechanistic underpinnings), cortical computation (through the study of ancestral cortices), and sensorimotor processing. This talk will describe our recent results on the remarkable camouflage behavior of cuttlefish (action) and on brain activity in REM and NonREM in lizards (sleep). Both topics will focus on aspects of circuit dynamics.

SeminarNeuroscienceRecording

NMC4 Short Talk: Two-Photon Imaging of Norepinephrine in the Prefrontal Cortex Shows that Norepinephrine Structures Cell Firing Through Local Release

Samira Glaeser-Khan
Yale University
Dec 2, 2021

Norepinephrine (NE) is a neuromodulator that is released from projections of the locus coeruleus via extra-synaptic vesicle exocytosis. Tonic fluctuations in NE are involved in brain states, such as sleep, arousal, and attention. Previously, NE in the PFC was thought to be a homogenous field created by bulk release, but it remains unknown whether phasic (fast, short-term) fluctuations in NE can produce a spatially heterogeneous field, which could then structure cell firing at a fine spatial scale. To understand how spatiotemporal dynamics of norepinephrine (NE) release in the prefrontal cortex affect neuronal firing, we performed a novel in-vivo two-photon imaging experiment in layer ⅔ of the prefrontal cortex using a green fluorescent NE sensor and a red fluorescent Ca2+ sensor, which allowed us to simultaneously observe fine-scale neuronal and NE dynamics in the form of spatially localized fluorescence time series. Using generalized linear modeling, we found that the local NE field differs from the global NE field in transient periods of decorrelation, which are influenced by proximal NE release events. We used optical flow and pattern analysis to show that release and reuptake events can occur at the same location but at different times, and differential recruitment of release and reuptake sites over time is a potential mechanism for creating a heterogeneous NE field. Our generalized linear models predicting cellular dynamics show that the heterogeneous local NE field, and not the global field, drives cell firing dynamics. These results point to the importance of local, small-scale, phasic NE fluctuations for structuring cell firing. Prior research suggests that these phasic NE fluctuations in the PFC may play a role in attentional shifts, orienting to sensory stimuli in the environment, and in the selective gain of priority representations during stress (Mather, Clewett et al. 2016) (Aston-Jones and Bloom 1981).

SeminarNeuroscience

Brain circuit dynamics in Action and Sleep

Gilles Laurent
Max Planck Institute for Brain Research, Frankfurt, Germany
Dec 1, 2021

Our group focuses on brain computation, physiology and evolution, with a particular focus on network dynamics, sleep (evolution and mechanistic underpinnings), cortical computation (through the study of ancestral cortices), and sensorimotor processing. This talk will describe our recent results on the remarkable camouflage behavior of cuttlefish (action) and on brain activity in REM and NonREM in lizards (sleep). Both topics will focus on aspects of circuit dynamics.

SeminarNeuroscienceRecording

NMC4 Short Talk: Stretching and squeezing of neuronal log firing rate distribution by psychedelic and intrinsic brain state transitions

Bradley Dearnly
University of Sheffield
Dec 1, 2021

How psychedelic drugs change the activity of cortical neuronal populations is not well understood. It is also not clear which changes are specific to transition into the psychedelic brain state and which are shared with other brain state transitions. Here, we used Neuropixels probes to record from large populations of neurons in prefrontal cortex of mice given the psychedelic drug TCB-2. The primary effect of drug ingestion was stretching of the distribution of log firing rates of the recorded population. This phenomenon was previously observed across transitions between sleep and wakefulness, which prompted us to examine how common it is. We found that modulation of the width of the log-rate distribution of a neuronal population occurred in multiple areas of the cortex and in the hippocampus even in awake drug-free mice, driven by intrinsic fluctuations in their arousal level. Arousal, however, did not explain the stretching of the log-rate distribution by TCB-2. In both psychedelic and intrinsically occurring brain state transitions, the stretching or squeezing of the log-rate distribution of an entire neuronal population were the result of a more close overlap between log-rate distributions of the upregulated and downregulated subpopulations in one brain state compared to the other brain state. Often, we also observed that the log-rate distribution of the downregulated subpopulation was stretched, whereas the log-rate distribution of the upregulated subpopulation was squeezed. In both subpopulations, the stretching and squeezing were a signature of a greater relative impact of the brain state transition on the rates of the slow-firing neurons. These findings reveal a generic pattern of reorganisation of neuronal firing rates by different kinds of brain state transitions.

SeminarNeuroscienceRecording

Being awake while sleeping, being asleep while awake: consequences on cognition and consciousness

Thomas Andrillon
Paris Brain Institute
Nov 18, 2021

Sleep is classically presented as an all-or-nothing phenomenon. Yet, there is increasing evidence showing that sleep and wakefulness can actually intermingle and that wake-like and sleep-like activity can be observed concomitantly in different brain regions. I will here explore the implications of this conception of sleep as a local phenomenon for cognition and consciousness. In the first part of my presentation, I will show how local modulations of sleep depth during sleep could support the processing of sensory information by sleepers. I will also how, under certain circumstances, sleepers can learn while sleeping but also how they can forget. In the second part, I will show how the reverse phenomenon, sleep intrusions during waking, can explain modulations of attention. I will focus in particular on modulations of subjective experience and how the local sleep framework can inform our understanding of everyday phenomena such as mind wandering and mind blanking. Through this presentation and the exploration of both sleep and wakefulness, I will seek to connect changes in neurophysiology with changes in behaviour and subjective experience.

SeminarNeuroscience

Second National Training Course on Sleep Medicine

Birgit Frauscher, MD, Brian Murray, MD, Ron Postuma, MD
Nov 17, 2021

Many patients presenting to neurology either have primary sleep disorders or suffer from sleep comorbidity. Knowledge on the diagnosis, differential diagnostic considerations, and management of these disorders is therefore mandatory for the general neurologist. This comprehensive course may serve to fulfill part of the preparation requirements for trainees seeking to complete the Royal College Examinations in Neurology. This training course is for R4 and R5 residents in Canadian neurology training programs as well as neurologists.

SeminarNeuroscience

Evidence for the role of glymphatic dysfunction in the development of Alzheimer’s disease

Jeffrey Iliff
VA Puget Sound Health Care System, University of Washignton, Seattle, WA, USA
Oct 24, 2021

Glymphatic perivascular exchange is supported by the astroglial water channel aquaporin-4 (AQP4), which localizes to perivascular astrocytic endfeet surrounding the cerebral vasculature. In aging mice, impairment of glymphatic function is associated with reduced perivascular AQP4 localization, yet whether these changes contribute to the development of neurodegenerative disease, such as Alzheimer’s disease (AD), remains unknown. Using post mortem human tissue, we evaluated perivascular AQP4 localization in the frontal cortical gray matter, white matter, and hippocampus of cognitively normal subjects and those with AD. Loss of perivascular and increasing cellular localization of AQP4 in the frontal gray matter was specifically associated with AD status, amyloid β (Aβ) and tau pathology, and cognitive decline in the early stages of disease. Using AAV-PHP.B to drive expression on non-perivascular AQP4 in wild type and Tg2576 (APPSwe, mouse model of Aβ deposition) mice, increased cellular AQP4 localization did not slow glymphatic function or change Aβ deposition. Using the Snta1 knockout line (which lacks perivascular AQP4 localization), we observed that loss AQP4 from perivascular endfeet slowed glymphatic function in wild type mice and accelerated Aβ plaque deposition in Tg2576 mice. These findings demonstrate that loss of perivascular AQP4 localization, and not increased cellular AQP4 localization, slows glymphatic function and promotes the development of AD pathology. To evaluate whether naturally occurring variation in the human AQP4 gene, or the alpha syntrophin (SNTA1), dystrobrevin (DTNA) or dystroglycan (DAG1) genes (whose products maintain perivascular AQP4 localization) confer risk for or protection from AD pathology or clinical progression, we evaluated 56 tag single nucleotide polymorphisms (SNPs) across these genes for association with CSF AD biomarkers, MRI measures of cortical and hippocampal atrophy, and longitudinal cognitive decline in the Alzheimer’s Disease Neuroimaging Initiative I (ADNI I) cohort. We identify 25 different significant associations between AQP4, SNTA1, DTNA, and DAG1 tag SNPs and phenotypic measures of AD pathology and progression. These findings provide complimentary human genetic evidence for the contribution of perivascular glymphatic dysfunction to the development of AD in human populations.

SeminarNeuroscience

Will it keep me awake? Common caffeine intake habits and sleep in real life situations

Hans-Peter Landolt
Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland; Sleep & Health Zurich, University Center of Competence, University of Zürich, Zürich, Switzerland
Oct 21, 2021

Daily caffeine consumption and chronic sleep restriction are highly prevalent in society. It is well established that acute caffeine intake under controlled conditions enhances vigilance and promotes wakefulness but can also delay sleep initiation and reduce electroencephalographic (EEG) markers of sleep intensity, particularly in susceptible individuals. To investigate whether these effects are also present during chronic consumption of coffee/caffeine, we recently conducted several complementary studies. We examined whether repeated coffee intake in dose and timing mimicking ‘real world’ habits maintains simple and complex attentional processes during chronic sleep restriction, such as during a busy work week. We found in genetically caffeine-sensitive individuals that regular coffee (300 mg caffeine/day) benefits most attentional tasks for 3-4 days when compared to decaffeinated coffee. Genetic variants were also used in the population-based HypnoLaus cohort, to investigate whether habitual caffeine consumption causally affects time to fall asleep, number of awakenings during sleep, and EEG-derived sleep intensity. The multi-level statistical analyses consistently showed that sleep quality was virtually unaffected when >3 caffeine-containing beverages/day were compared to 0-3 beverages/day. This conclusion was further corroborated by quantifying the sleep EEG in the laboratory in habitual caffeine consumers. Compared to placebo, daily intake of 3 x 150 mg caffeine over 10 days did not strongly impair nocturnal sleep nor subjective sleep quality in good sleepers. Finally, we tested whether an engineered delayed, pulsatile-release caffeine formula can improve the quality of morning awakening in sleep-restricted volunteers. We found that 160 mg caffeine taken at bedtime ameliorated the quality of awakening, increased positive and reduced negative affect scores, and promoted sustained attention immediately upon scheduled wake-up. Such an approach could prevent over-night caffeine withdrawal and provide a proactive strategy to attenuate disabling sleep inertia. Taken together, the studies suggest that common coffee/caffeine intake habits can transiently attenuate detrimental consequences of reduced sleep virtually without disturbing subjective and objective markers of sleep quality. Nevertheless, coffee/caffeine consumption cannot compensate for chronic sleep restriction.

SeminarNeuroscienceRecording

Dancing to a Different Tune: TANGO Gives Hope for Dravet Syndrome

Lori Isom
University of Michigan
Oct 19, 2021

The long-term goal of our research is to understand the mechanisms of SUDEP, defined as Sudden, Unexpected, witnessed or unwitnessed, nontraumatic and non-drowning Death in patients with EPilepsy, excluding cases of documented status epilepticus. The majority of SUDEP patients die during sleep. SUDEP is the most devastating consequence of epilepsy, yet little is understood about its causes and no biomarkers exist to identify at risk patients. While SUDEP accounts for 7.5-20% of all epilepsy deaths, SUDEP risk in the genetic epilepsies varies with affected genes. Patients with ion channel gene variants have the highest SUDEP risk. Indirect evidence variably links SUDEP to seizure-induced apnea, pulmonary edema, dysregulation of cerebral circulation, autonomic dysfunction, and cardiac arrhythmias. Arrhythmias may be primary or secondary to hormonal or metabolic changes, or autonomic discharges. When SUDEP is compared to Sudden Cardiac Death secondary to Long QT Syndrome, especially to LQT3 linked to variants in the voltage-gated sodium channel (VGSC) gene SCN5A, there are parallels in the circumstances of death. To gain insight into SUDEP mechanisms, our approach has focused on channelopathies with high SUDEP incidence. One such disorder is Dravet syndrome (DS), a devastating form of developmental and epileptic encephalopathy (DEE) characterized by multiple pharmacoresistant seizure types, intellectual disability, ataxia, and increased mortality. While all patients with epilepsy are at risk for SUDEP, DS patients may have the highest risk, up to 20%, with a mean age at SUDEP of 4.6 years. Over 80% of DS is caused by de novo heterozygous loss-of-function (LOF) variants in SCN1A, encoding the VGSC Nav1.1  subunit, resulting in haploinsufficiency. A smaller cohort of patients with DS or a more severe DEE have inherited, homozygous LOF variants in SCN1B, encoding the VGSC 1/1B non-pore-forming subunits. A related DEE, Early Infantile EE (EIEE) type 13, is linked to de novo heterozygous gain-of-function variants in SCN8A, encoding the VGSC Nav1.6. VGSCs underlie the rising phase and propagation of action potentials in neurons and cardiac myocytes. SCN1A, SCN8A, and SCN1B are expressed in both the heart and brain of humans and mice. Because of this, we proposed that cardiac arrhythmias contribute to the mechanism of SUDEP in DEE. We have taken a novel approach to the development of therapeutics for DS in collaboration with Stoke Therapeutics. We employed Targeted Augmentation of Nuclear Gene Output (TANGO) technology, which modulates naturally occurring, non-productive splicing events to increase target gene and protein expression and ameliorate disease phenotype in a mouse model. We identified antisense oligonucleotides (ASOs) that specifically increase the expression of productive Scn1a transcript in human and mouse cell lines, as well as in mouse brain. We showed that a single intracerebroventricular dose of a lead ASO at postnatal day 2 or 14 reduced the incidence of electrographic seizures and SUDEP in the F1:129S-Scn1a+/- x C57BL/6J mouse model of DS. Increased expression of productive Scn1a transcript and NaV1.1 protein were confirmed in brains of treated mice. Our results suggest that TANGO may provide a unique, gene-specific approach for the treatment of DS.

SeminarNeuroscience

Sleep features that change your mind

Gina Poe
Universityof California Los Angeles (UCLA), Department of Integrative Biology and Physiology, USA
Sep 12, 2021
SeminarNeuroscience

Sleep and Plasticity - New insights from in vivo calcium imaging

Niels Niethard
Institute of Medical Psychology, University of Tübingen, Germany
Sep 7, 2021
SeminarNeuroscienceRecording

Investigating the neural mechanisms of spatial attention biases during sleep onset

Corinne Bareham
Massey University
Jul 18, 2021
SeminarNeuroscienceRecording

Active sleep in flies: the dawn of consciousness

Bruno van Swinderen
University of Queensland
Jul 18, 2021

The brain is a prediction machine. Yet the world is never entirely predictable, for any animal. Unexpected events are surprising and this typically evokes prediction error signatures in animal brains. In humans such mismatched expectations are often associated with an emotional response as well. Appropriate emotional responses are understood to be important for memory consolidation, suggesting that valence cues more generally constitute an ancient mechanism designed to potently refine and generalize internal models of the world and thereby minimize prediction errors. On the other hand, abolishing error detection and surprise entirely is probably also maladaptive, as this might undermine the very mechanism that brains use to become better prediction machines. This paradoxical view of brain functions as an ongoing tug-of-war between prediction and surprise suggests a compelling new way to study and understand the evolution of consciousness in animals. I will present approaches to studying attention and prediction in the tiny brain of the fruit fly, Drosophila melanogaster. I will discuss how an ‘active’ sleep stage (termed rapid eye movement – REM – sleep in mammals) may have evolved in the first animal brains as a mechanism for optimizing prediction in motile creatures confronted with constantly changing environments. A role for REM sleep in emotional regulation could thus be better understood as an ancient sleep function that evolved alongside selective attention to maintain an adaptive balance between prediction and surprise. This view of active sleep has some interesting implications for the evolution of subjective awareness and consciousness.

SeminarNeuroscience

Why we all need a good night’s sleep

Amita Sehgal
University of Pennsylvania
Jul 11, 2021

We seek to determine how circadian rhythms and sleep are integrated with physiological processes to provide optimal fitness and health. Using initially a Drosophila model, and more recently also mammalian models, we have found that aspects of the blood brain barrier (BBB) are controlled by the circadian clock. BBB properties are also influenced by sleep:wake state in Drosophila, and, in fact, appear to be contribute to functions of sleep. This and other work, which implicates sleep in the regulation of metabolic processes, is providing insights into sleep function

SeminarNeuroscienceRecording

Technologies for large scale cortical imaging and electrophysiology

Suhasa Kodandaramaiah
University of Minnesota
Jun 21, 2021

Neural computations occurring simultaneously in multiple cerebral cortical regions are critical for mediating behaviors. Progress has been made in understanding how neural activity in specific cortical regions contributes to behavior. However, there is a lack of tools that allow simultaneous monitoring and perturbing neural activity from multiple cortical regions. We have engineered a suite of technologies to enable easy, robust access to much of the dorsal cortex of mice for optical and electrophysiological recordings. First, I will describe microsurgery robots that can programmed to perform delicate microsurgical procedures such as large bilateral craniotomies across the cortex and skull thinning in a semi-automated fashion. Next, I will describe digitally designed, morphologically realistic, transparent polymer skulls that allow long-term (>300 days) optical access. These polymer skulls allow mesoscopic imaging, as well as cellular and subcellular resolution two-photon imaging of neural structures up to 600 µm deep. We next engineered a widefield, miniaturized, head-mounted fluorescence microscope that is compatible with transparent polymer skull preparations. With a field of view of 8 × 10 mm2 and weighing less than 4 g, the ‘mini-mScope’ can image most of the mouse dorsal cortex with resolutions ranging from 39 to 56 µm. We used the mini-mScope to record mesoscale calcium activity across the dorsal cortex during sensory-evoked stimuli, open field behaviors, social interactions and transitions from wakefulness to sleep.

SeminarNeuroscience

Sleepless in Vienna - how to rescue folding-deficient dopamine transporters by pharmacochaperoning

Michael Freissmuth
Medical University of Vienna
Jun 17, 2021

Diseases that arise from misfolding of an individual protein are rare. However, collectively, these folding diseases represent a large proportion of hereditary and acquired disorders. In fact, the term "Molecular Medicine" was coined by Linus Pauling in conjunction with the study of a folding disease, i.e. sickle cell anemia. In the past decade, we have witnessed an exponential growth in the number of mutations, which have been identified in genes encoding solute carriers (SLC). A sizable faction - presumably the majority - of these mutations result in misfolding of the encoded protein. While studying the export of the GABA transporter (SLC6A1) and of the serotonin transporter (SLC6A4), from the endoplasmic reticulum (ER), we discovered by serendipity that some ligands can correct the folding defect imparted by point mutations. These bind to the inward facing state. The most effective compound is noribogaine, the metabolite of ibogaine (an alkaloid first isolated from the shrub Tabernanthe iboga). There are 13 mutations in the human dopamine transporter (DAT, SLC6A3), which give rise to a syndrome of infantile Parkinsonism and dystonia. We capitalized on our insights to explore, if the disease-relevant mutant proteins were amenable to pharmacological correction. Drosopohila melanogaster, which lack the dopamine transporter, are hyperactive and sleepless (fumin in Japanese). Thus, mutated human DAT variants can be introduced into fumin flies. This allows for examining the effect of pharmacochaperones on delivery of DAT to the axonal territory and on restoring sleep. We explored the chemical space populated by variations of the ibogaine structure to identify an analogue (referred to as compound 9b), which was highly effective: compound 9b also restored folding in DAT variants, which were not amenable to rescue by noribogaine. Deficiencies in the human creatine transporter-1 (CrT1, SLC6A8) give rise to a syndrome of intellectual disability and seizures and accounts for 5% of genetically based intellectual disabilities in boys. Point mutations occur, in part, at positions, which are homologous to those of folding-deficient DAT variants. CrT1 lacks the rich pharmacology of monoamine transporters. Nevertheless, our insights are also applicable to rescuing some disease-related variants of CrT1. Finally, the question arises how one can address the folding problem. We propose a two-pronged approach: (i) analyzing the effect of mutations on the transport cycle by electrophysiological recordings; this allows for extracting information on the rates of conformational transitions. The underlying assumption posits that - even when remedied by pharmacochaperoning - folding-deficient mutants must differ in the conformational transitions associated with the transport cycle. (ii) analyzing the effect of mutations on the two components of protein stability, i.e. thermodynamic and kinetic stability. This is expected to provide a glimpse of the energy landscape, which governs the folding trajectory.

SeminarNeuroscience

Imaging memory consolidation in wakefulness and sleep

Monika Schönauer
Albert-Ludwigs-Univery of Freiburg
Jun 16, 2021

New memories are initially labile and have to be consolidated into stable long-term representations. Current theories assume that this is supported by a shift in the neural substrate that supports the memory, away from rapidly plastic hippocampal networks towards more stable representations in the neocortex. Rehearsal, i.e. repeated activation of the neural circuits that store a memory, is thought to crucially contribute to the formation of neocortical long-term memory representations. This may either be achieved by repeated study during wakefulness or by a covert reactivation of memory traces during offline periods, such as quiet rest or sleep. My research investigates memory consolidation in the human brain with multivariate decoding of neural processing and non-invasive in-vivo imaging of microstructural plasticity. Using pattern classification on recordings of electrical brain activity, I show that we spontaneously reprocess memories during offline periods in both sleep and wakefulness, and that this reactivation benefits memory retention. In related work, we demonstrate that active rehearsal of learning material during wakefulness can facilitate rapid systems consolidation, leading to an immediate formation of lasting memory engrams in the neocortex. These representations satisfy general mnemonic criteria and cannot only be imaged with fMRI while memories are actively processed but can also be observed with diffusion-weighted imaging when the traces lie dormant. Importantly, sleep seems to hold a crucial role in stabilizing the changes in the contribution of memory systems initiated by rehearsal during wakefulness, indicating that online and offline reactivation might jointly contribute to forming long-term memories. Characterizing the covert processes that decide whether, and in which ways, our brains store new information is crucial to our understanding of memory formation. Directly imaging consolidation thus opens great opportunities for memory research.

ePoster

Cortex-wide high density ECoG recordings from rat reveal diverse generators of sleep-spindles with characteristic anatomical topographies and non-stationary subcycle dynamics

Arash Shahidi, Ramon Garcia-Cortadella, Gerrit Schwesig, Anna Umurzakova, Mudra Deshpande, Ekaterina Sonia, Anton Sirota

Bernstein Conference 2024

ePoster

A neuronal central pattern generator to control the REM/non-REM sleep cycle

Juan Luis Riquelme, Lorenz Fenk, Gilles Laurent

Bernstein Conference 2024

ePoster

Exploring the neuroprotective effect of auditory enhanced slow-wave sleep in a mouse model of Alzheimer’s disease

Inês Dias, Irena Barbaric, Vera Gysin, Christian Baumann, Sedef Kollarik, Daniela Noain

FENS Forum 2024

ePoster

Hippocampal Neocortical Coupling Varies as a Function of Depth of NREM Sleep

COSYNE 2022

ePoster

Hippocampal Neocortical Coupling Varies as a Function of Depth of NREM Sleep

COSYNE 2022

ePoster

Movement and stimuli are differentially encoded in on- or off-manifold dimensions revealed by sleep

COSYNE 2022

ePoster

Movement and stimuli are differentially encoded in on- or off-manifold dimensions revealed by sleep

COSYNE 2022

ePoster

Orienting eye movements during REM sleep

COSYNE 2022

ePoster

Orienting eye movements during REM sleep

COSYNE 2022

ePoster

Hippocampal Neocortical Coupling Varies as a Function of Depth of NREM Sleep

Rachel Swanson, György Buzsáki, Jayeeta Basu

COSYNE 2023

ePoster

Retuning of Hippocampal Place Representations During Sleep

Kamran Diba, Kourosh Maboudi, Caleb Kemere, Bapun Giri, Hiroyuki Miyawaki

COSYNE 2023

ePoster

Spatiotemporal patterns of adaptation-induced slow oscillations in a whole-brain model of slow-wave sleep

Caglar Cakan, Cristiana Dimulescu, Liliia Khakimova, Daniela Obst, Agnes Flöel, Klaus Obermayer

COSYNE 2023

ePoster

Wake-like Skin Patterning and Neural Activity During Octopus Sleep

Tomoyuki Mano, Aditi Pophale, Kazumichi Shimizu, Teresa Iglesias, Kerry Martin, Makoto Hiroi, Keishu Asada, Paulette García Andaluz, Thi Thu Van Dinh, Leenoy Meshulam, Sam Reiter

COSYNE 2023

ePoster

A prefrontal to amygdala pathway for adaptive sleep interruption

Huiwen Zhu, Michael Halassa, Norman Lam, Jonathan Scott, Ralf Wimmer, Mario Penzo

COSYNE 2025

ePoster

NAP: Advanced cellular models for studying individual sleep dynamics

Chiara Magliaro, Jens Christian Schwamborn, Patrick Ruther, Umberto Olcese, Arno Aart, Ugo Faraguna

FENS Forum 2024

ePoster

Anatomically heterogeneous pyramidal cells in supragranular layers of the dorsal cortex show the surface-to-deep firing frequency increase during natural sleep

Boglárka Bozsó, Robert G. Averkin, János Horváth, Sándor Bordé, Gábor Tamás

FENS Forum 2024

ePoster

Association of insulin-like growth factor 1 with post-traumatic brain injury sleep disorders: A longitudinal study

Kai-Yun Chen, Ju-Chi Ou, Yung-Hsiao Chiang, John Chung-Che Wu

FENS Forum 2024

ePoster

Both ablation and activation of the preoptic area cause sleep fragmentation

Ayako Imamura, Koichi Miyatake, Akiko Ihara, Sakiko Honjoh

FENS Forum 2024

ePoster

Brain-wide effects of pontine waves across sleep stages

Mirna Merkler, Shuzo Sakata

FENS Forum 2024

ePoster

A brainstem circuit regulating anxiety with slow-wave sleep

Xiang Feng, Huiying Zhao, Yunting Su, Yan-Qin Yu, Li Sun, Shumin Duan

FENS Forum 2024

ePoster

Breakdown of auditory processing hierarchy in human sleep

Sigurd Alnes, Ellen van Maren, Ida Boccalaro, Camille G. Mignardot, Debora Ledergerber, Johannes Sarnthein, Markus Schmidt, Antoine Adamantidis, Lukas L. Imbach, Kaspar Schindler, Maxime O. Baud, Athina Tzovara

FENS Forum 2024

ePoster

Causal role of PFC-M1 coordination during sleep in long-term motor memory consolidation

Jaekyung Kim, Linmeng He, Karunesh Ganguly

FENS Forum 2024

ePoster

Kv channels integrate sleep pressure in a voltage-gated lipid peroxidation memory

Hans Olof Rorsman, Gero Miesenböck

FENS Forum 2024

ePoster

Characterization of a novel missense mutation in the α2 subunit of the neuronal nicotinic acetylcholine receptor linked to sleep-related generalized seizures with cognitive deficit

Chiara Villa, Laura Clara Grandi, Valerio Conti, Simone Meneghini, Eleonora Giagnorio, Renzo Guerrini, Romina Combi, Andrea Becchetti

FENS Forum 2024

ePoster

Characterizing sleep in a 22q11.2 deletion mouse model of psychiatric disorders

Julia Berger, Navneet Vasistha, Celia Kjaerby

FENS Forum 2024

ePoster

Chemogenetic activation of thalamic subnuclei distinctively impairs sleep physiology

Philipp Janz, Joana Duarte, Jan Schulz, Simon Gross, Marie Bainier, Roger Redondo

FENS Forum 2024

ePoster

Chronic unpredictable sleep disruption induces changes in locomotor activity, metabolism, and inflammation in Wistar rats

Heather Macpherson, Roger Varela, Sebastian McCullough, Tristan Houghton, Isha Chawla, Ning Wang, Xiaoying Cui, Susannah Tye

FENS Forum 2024

ePoster

The key circadian neuropeptide PDF has sexually dimorphic effects on activity rhythms and sleep

Aishwarya Iyer, Eva Scholz-Carlson, Evardra Bell, Grace Biondi, Shlesha Richhariya, Maria de la Paz Fernandez

FENS Forum 2024

ePoster

Circadian rhythm and sleep in lizards

Sho Yamaguchi, Sena Hatori, Koki Kotake, Zhiwen Zhou, Hiroaki Norimoto

FENS Forum 2024

ePoster

Conservation of sensory coding in the auditory cortex of mice between wakefulness and sleep

Allan Muller, Sophie Bagur, Brice Bathellier

FENS Forum 2024

ePoster

Crosstalk between the subiculum and sleep-wake regulation: A preliminary study

Sadegh Rahimi, Meinrad Drexel

FENS Forum 2024

ePoster

Decoding sleep patterns: Unraveling temazepam impact through BENDR encoder and its latent space analysis

Julia Jakubowska, Jarosław Żygierewicz

FENS Forum 2024

ePoster

Development of hippocampal-cortical interaction during sleep in pups

Morgane Audrain, Rafael Pedrosa, Federico Stella, Francesco Battaglia, Freyja Olafsdottir

FENS Forum 2024

ePoster

Developmental trajectories of sleep EEG in neurodevelopmental disorders: Does sex matter?

Nataliia Kozhemiako, Shaun M. Purcell

FENS Forum 2024

ePoster

Differential sleep-like deficits of Neurofibromatosis 1 mutations in Drosophila melanogaster

Kalliopi Atsoniou, Eirini-Maria Georganta, Efthimios Skoulakis

FENS Forum 2024

ePoster

Distinct claustrum-cortex connections are involved in cognitive control performance and habitual sleep in humans

Virginia Conde Ruiz, Eden Nordvold Barak, Margrethe Hansen, René Huster

FENS Forum 2024

ePoster

Two distinct ways to form long-term object recognition memory during sleep and wakefulness

Max Harkotte, Anuck Sawangjit, Carlos Oyanedel, Niels Niethard, Jan Born, Marion Inostroza

FENS Forum 2024

ePoster

Does sleep protect against oxidative stress?

Alina Krebbers, Gero Miesenböck

FENS Forum 2024

ePoster

Drifting memories: Sleep stages play opposite roles in reshaping memory representations

Lars Bollmann, Peter Baracskay, Jozsef Csicsvari, Federico Stella

FENS Forum 2024

ePoster

Building internal models during periods of rest and sleep

Helen Barron

Bernstein Conference 2024