Slow Waves
slow waves
Multimodal investigation of the associations between sleep and Alzheimer's disease neuropathology in healthy individuals
Alterations in sleep are hallmarks of the ageing process and emerges as risk factors for Alzheimer’s disease (AD). While the fine-tuned coalescence of sleep microstructure elements may influence age-related cognitive trajectories, its association with AD-related processes is not fully established. We investigated whether sleep arousals and the coupling of spindles and slow waves, key elements of sleep microstructure, are associated with early amyloid-beta (Aβ) brain burden, hallmark of AD neuropathology, and cognitive change at 2 years in 100 late-midlife healthy individuals. We first found that arousals interrupting sleep continuity were positively linked to Aβ burden, while, by contrast, the more prevalent arousals upholding sleep continuity were associated with lower Aβ burden and better cognition. We further found that young-like co-occurrence of spindles and slow-depolarisation slow waves is associated to lower burden of Aβ over the medial prefrontal cortex and is predictive of memory decline at 2-year follow-up. We provide empirical evidence that arousals are diverse and differently associated with early AD-related neuropathology and cognition. We further show the altered coupling of sleep microstructure elements that are key to its mnesic functions may contribute to poorer brain and cognitive trajectories. The presentation will end with preliminary data show that activity of the locus coeruleus, essential to sleep and showing some of the earliest signs of AD-related pathological processes, is associated with sleep quality. These preliminary findings are the first of a project ailed at link sleep and AD through the locus coeruleus.
Multiscale modeling of brain states, from spiking networks to the whole brain
Modeling brain mechanisms is often confined to a given scale, such as single-cell models, network models or whole-brain models, and it is often difficult to relate these models. Here, we show an approach to build models across scales, starting from the level of circuits to the whole brain. The key is the design of accurate population models derived from biophysical models of networks of excitatory and inhibitory neurons, using mean-field techniques. Such population models can be later integrated as units in large-scale networks defining entire brain areas or the whole brain. We illustrate this approach by the simulation of asynchronous and slow-wave states, from circuits to the whole brain. At the mesoscale (millimeters), these models account for travelling activity waves in cortex, and at the macroscale (centimeters), the models reproduce the synchrony of slow waves and their responsiveness to external stimuli. This approach can also be used to evaluate the impact of sub-cellular parameters, such as receptor types or membrane conductances, on the emergent behavior at the whole-brain level. This is illustrated with simulations of the effect of anesthetics. The program codes are open source and run in open-access platforms (such as EBRAINS).
Local sleep regulation and its implications for cognition and brain plasticity
Sleep has been classically described as an all-or-nothing global phenomenon. However, a growing body of evidence indicates that typical sleep hallmarks, such as slow waves and spindles, occur and are regulated locally. I will present here evidence indicating that slow waves, in particular, may be related with, and offer a read-out of, local and long-range brain connectivity. In fact, slow waves do not only track changes related to both experience-dependent plasticity and brain maturation during development, but also appear to be actively involved in the fine regulation of brain plasticity and in the removal of metabolic wastes. I will also show that, consistent with a local regulation of sleep, slow waves can often occur locally during wakefulness, with an incidence that varies as a function of time spent awake and of previous rest. These waking slow waves are associated with impaired performance during cognitive tasks and may contribute to explain attention lapses and errors commonly associated with insufficient sleep.
Basolateral amygdala activity phase-locked to neocortical slow waves underlies fear memory consolidation
FENS Forum 2024
An in silico study of local and global properties in the propagation of cortical slow waves
FENS Forum 2024