Smooth Pursuit
smooth pursuit
The role of high- and low-level factors in smooth pursuit of predictable and random motions
Smooth pursuit eye movements are among our most intriguing motor behaviors. They are able to keep the line of sight on smoothly moving targets with little or no overt effort or deliberate planning, and they can respond quickly and accurately to changes in the trajectory of motion of targets. Nevertheless, despite these seeming automatic characteristics, pursuit is highly sensitive to high-level factors, such as the choices made about attention, or beliefs about the direction of upcoming motion. Investigators have struggled for decades with the problem of incorporating both high- and low-level processes into a single coherent model. This talk will present an overview of the current state of efforts to incorporate high- and low-level influences, as well as new observations that add to our understanding of both types of influences. These observations (in contrast to much of the literature) focus on the directional properties of pursuit. Studies will be presented that show: (1) the direction of smooth pursuit made to pursue fields of noisy random dots depends on the relative reliability of the sensory signal and the expected motion direction; (2) smooth pursuit shows predictive responses that depend on the interpretation of cues that signal an impending collision; and (3) smooth pursuit during a change in target direction displays kinematic properties consistent with the well-known two-thirds power law. Implications for incorporating high- and low-level factors into the same framework will be discussed.
Using two-dimensional oculomotor modeling to analyze smooth pursuit performance
FENS Forum 2024