Social Cognition
social cognition
Dr. David Omer
Our research program is aimed at elucidating the neural mechanisms of social cognition and navigation in the brain, using a combination of computational and experimental techniques. Positions are available for projects related to the neural basis of social cognition in the hippocampus, and the neural basis of spatial navigation in freely behaving animals. using wireless neural recordings techniques.
Laurent Mertens
We are looking for a motivated PhD student to join our project "Social Cognition In Silico and In Vivo" (SCIVIS), with proficiency in Dutch of at least B2 level. The research is embedded in a vibrant and interdisciplinary research network. The Center Neuropsychiatry at KU Leuven (Belgium) operates at the crossroads of neurology, psychiatry, and cognitive neuroscience. Through an integrated, interdisciplinary approach, we investigate how brain networks support behavior, emotions, and social interaction, both in neurotypical individuals and in people with neuropsychiatric conditions. The project is conducted in close collaboration with the Research Unit Brain & Cognition at KU Leuven, known for its expertise in experimental psychology and cognitive neuroscience, and the AI Lab of VUB university, Brussels, a leading center in artificial intelligence research. Together, these partners bring complementary strengths to the study of social cognition, linking brain, behavior, and computation. As part of the SCIVIS project, we are looking for a PhD candidate to investigate the neural underpinnings of social cognition using functional brain imaging (fMRI/fNIRS). This cutting-edge initiative bridges neuroscience and artificial intelligence to advance our understanding of social cognition in both neurotypical individuals and those with atypical development, with a particular focus on autism and frontotemporal dementia. The position offers the opportunity to design and carry out behavioral and neuroimaging experiments, and to collaborate closely with computational scientists and experimental psychologists. You will join a dynamic research team and contribute to high-impact science at the interface of neuroscience and AI, with real potential to advance our understanding of the social brain. As a PhD student, you will contribute mostly to the in vivo research package, including: Designing and conducting behavioral and neuroimaging experiments (fMRI and fNIRS) to explore social cognitive functions. Collecting and analyzing imaging data to investigate the brain mechanisms underlying social cognition. Collaborating with a multidisciplinary team and integrating findings with computational modeling efforts. Preparing publications for leading scientific journals and presenting at international conferences.
Great ape interaction: Ladyginian but not Gricean
Non-human great apes inform one another in ways that can seem very humanlike. Especially in the gestural domain, their behavior exhibits many similarities with human communication, meeting widely used empirical criteria for intentionality. At the same time, there remain some manifest differences. How to account for these similarities and differences in a unified way remains a major challenge. This presentation will summarise the arguments developed in a recent paper with Christophe Heintz. We make a key distinction between the expression of intentions (Ladyginian) and the expression of specifically informative intentions (Gricean), and we situate this distinction within a ‘special case of’ framework for classifying different modes of attention manipulation. The paper also argues that the attested tendencies of great ape interaction—for instance, to be dyadic rather than triadic, to be about the here-and-now rather than ‘displaced’—are products of its Ladyginian but not Gricean character. I will reinterpret video footage of great ape gesture as Ladyginian but not Gricean, and distinguish several varieties of meaning that are continuous with one another. We conclude that the evolutionary origins of linguistic meaning lie in gradual changes in not communication systems as such, but rather in social cognition, and specifically in what modes of attention manipulation are enabled by a species’ cognitive phenotype: first Ladyginian and in turn Gricean. The second of these shifts rendered humans, and only humans, ‘language ready’.
Social Curiosity
In this lecture, I would like to share with the broad audience the empirical results gathered and the theoretical advancements made in the framework of the Lendület project entitled ’The cognitive basis of human sociality’. The main objective of this project was to understand the mechanisms that enable the unique sociality of humans, from the angle of cognitive science. In my talk, I will focus on recent empirical evidence in the study of three fundamental social cognitive functions (social categorization, theory of mind and social learning; mainly from the empirical lenses of developmental psychology) in order to outline a theory that emphasizes the need to consider their interconnectedness. The proposal is that the ability to represent the social world along categories and the capacity to read others’ minds are used in an integrated way to efficiently assess the epistemic states of fellow humans by creating a shared representational space. The emergence of this shared representational space is both the result of and a prerequisite to efficient learning about the physical and social environment.
The role of top-down mechanisms in gaze perception
Humans, as a social species, have an increased ability to detect and perceive visual elements involved in social exchanges, such as faces and eyes. The gaze, in particular, conveys information crucial for social interactions and social cognition. Researchers have hypothesized that in order to engage in dynamic face-to-face communication in real time, our brains must quickly and automatically process the direction of another person's gaze. There is evidence that direct gaze improves face encoding and attention capture and that direct gaze is perceived and processed more quickly than averted gaze. These results are summarized as the "direct gaze effect". However, in the recent literature, there is evidence to suggest that the mode of visual information processing modulates the direct gaze effect. In this presentation, I argue that top-down processing, and specifically the relevance of eye features to the task, promotes the early preferential processing of direct versus indirect gaze. On the basis of several recent evidences, I propose that low task relevance of eye features will prevent differences in eye direction processing between gaze directions because its encoding will be superficial. Differential processing of direct and indirect gaze will only occur when the eyes are relevant to the task. To assess the implication of task relevance on the temporality of cognitive processing, we will measure event-related potentials (ERPs) in response to facial stimuli. In this project, instead of typical ERP markers such as P1, N170 or P300, we will measure lateralized ERPs (lERPS) such as lateralized N170 and N2pc, which are markers of early face encoding and attentional deployment respectively. I hypothesize that the relevance of the eye feature task is crucial in the direct gaze effect and propose to revisit previous studies, which had questioned the existence of the direct gaze effect. This claim will be illustrate with different past studies and recent preliminary data of my lab. Overall, I propose a systematic evaluation of the role of top-down processing in early direct gaze perception in order to understand the impact of context on gaze perception and, at a larger scope, on social cognition.
Learning from others, helping others learn: Cognitive foundations of distinctively human social learning
Learning does not occur in isolation. From parent-child interactions to formal classroom environments, humans explore, learn, and communicate in rich, diverse social contexts. Rather than simply observing and copying their conspecifics, humans engage in a range of epistemic practices that actively recruit those around them. What makes human social learning so distinctive, powerful, and smart? In this talk, I will present a series of studies that reveal the remarkably sophisticated inferential abilities that young children show not only in how they learn from others but also in how they help others learn. Children interact with others as learners and as teachers to learn and communicate about the world, about others, and even about the self. The results collectively paint a picture of human social learning that is far more than copying and imitation: It is active, bidirectional, and cooperative. I will end by discussing ongoing work that extends this picture beyond what we typically call “social learning”, with implications for building better machines that learn from and interact with humans.
A transdiagnostic data-driven study of children’s behaviour and the functional connectome
Behavioural difficulties are seen as hallmarks of many neurodevelopmental conditions. Differences in functional brain organisation have been observed in these conditions, but little is known about how they are related to a child’s profile of behavioural difficulties. We investigated whether behavioural difficulties are associated with how the brain is functionally organised in an intentionally heterogeneous and transdiagnostic sample of 957 children aged 5-15. We used consensus community detection to derive data-driven profiles of behavioural difficulties and constructed functional connectomes from a subset of 238 children with resting-state functional Magnetic Resonance Imaging (fMRI) data. We identified three distinct profiles of behaviour that were characterised by principal difficulties with hot executive function, cool executive function, and learning. Global organisation of the functional connectome did not differ between the groups, but multivariate patterns of connectivity at the level of Intrinsic Connectivity Networks (ICNs), nodes, and hubs significantly predicted group membership in held-out data. Fronto-parietal connector hubs were under-connected in all groups relative to a comparison sample, and children with hot vs cool executive function difficulties were distinguished by connectivity in ICNs associated with cognitive control, emotion processing, and social cognition. This demonstrates both general and specific neurodevelopmental risk factors in the functional connectome. (https://www.medrxiv.org/content/10.1101/2021.09.15.21262637v1)
The Social Brain: From Models to Mental Health
Given the complex and dynamic nature of our social relationships, the human brain needs to quickly learn and adapt to new social situations. The breakdown of any of these computations could lead to social deficits, as observed in many psychiatric disorders. In this talk, I will present our recent neurocomputational and intracranial work that attempts to model both 1) how humans dynamically adapt beliefs about other people and 2) how individuals can exert influence over social others through model-based forward thinking. Lastly, I will present our findings of how impaired social computations might manifest in different disorders such as addiction, delusion, and autism. Taken together, these findings reveal the dynamic and proactive nature of human interactions as well as the clinical significance of these high-order social processes.
Psychological mechanisms and functions of 5-HT and SSRIs in potential therapeutic change: Lessons from the serotonergic modulation of action selection, learning, affect, and social cognition
Uncertainty regarding which psychological mechanisms are fundamental in mediating SSRI treatment outcomes and wide-ranging variability in their efficacy has raised more questions than it has solved. Since subjective mood states are an abstract scientific construct, only available through self-report in humans, and likely involving input from multiple top-down and bottom-up signals, it has been difficult to model at what level SSRIs interact with this process. Converging translational evidence indicates a role for serotonin in modulating context-dependent parameters of action selection, affect, and social cognition; and concurrently supporting learning mechanisms, which promote adaptability and behavioural flexibility. We examine the theoretical basis, ecological validity, and interaction of these constructs and how they may or may not exert a clinical benefit. Specifically, we bridge crucial gaps between disparate lines of research, particularly findings from animal models and human clinical trials, which often seem to present irreconcilable differences. In determining how SSRIs exert their effects, our approach examines the endogenous functions of 5-HT neurons, how 5-HT manipulations affect behaviour in different contexts, and how their therapeutic effects may be exerted in humans – which may illuminate issues of translational models, hierarchical mechanisms, idiographic variables, and social cognition.
LAB COGNITION GOING WILD: Field experiments on vervet monkeys'
I will present field experiments on vervet monkeys testing physical and social cognition, with a focus on social learning. The understanding of the emergence of cultural behaviours in animals has advanced significantly with contributions from complementary approaches: natural observations and controlled field experiments. Experiments with wild vervet monkeys highlight that monkeys are selective about ‘who’ they learn from socially and that they will abandon personal foraging preferences in favour of group norms new to them. The reported findings highlight the feasibility to study cognition under field conditions.
Becoming Human: A Theory of Ontogeny
Humans are biologically adapted for cultural life in ways that other primates are not. Humans have unique motivations and cognitive skills for sharing emotions, experience, and collaborative actions (shared intentionality). These motivations and skills first emerge in human ontogeny at around one year of age, as infants begin to participate with other persons in various kinds of collaborative and joint attentional activities, including linguistic communication. Our nearest primate relatives understand important aspects of intentional action - especially in competitive situations - but they do not seem to have the motivations and cognitive skills necessary to engage in activities involving collaboration, shared intentionality, and, in general, things cultural.
A sense of time in human evolution
What psychological mechanisms do primates use to engage in self-control, and what is the ultimate function of these skills? I will argue that a suite of decision-making capacities, including choices about the timing of benefits, evolved in the context of foraging behaviors and vary with ecological complexity across species. Then, I will examine how these foraging capacities can be generalized to solve novel problems posing temporal costs that are important for humans, such as cooking food, and can therefore underpin evolutionary transitions in behavior. Finally, I will present work testing the hypothesis that a limited future time horizon constrains the expression of other complex abilities in nonhumans, explaining the emergence of human-unique forms of social cognition and behavior.
Monkey Talk – what studies about nonhuman primate vocal communication reveal about the evolution of speech
The evolution of speech is considered to be one of the hardest problems in science. Studies of the communicative abilities of our closest living relatives, the nonhuman primates, aim to contribute to a better understanding of the emergence of this uniquely human capability. Following a brief introduction over the key building blocks that make up the human speech faculty, I will focus on the question of meaning in nonhuman primate vocalizations. While nonhuman primate calls may be highly context specific, thus giving rise to the notion of ‘referentiality’, comparisons across closely related species suggest that this specificity is evolved rather than learned. Yet, as in humans, the structure of calls varies with arousal and affective state, and there is some evidence for effects of sensory-motor integration in vocal production. Thus, the vocal production of nonhuman primates bears little resemblance to the symbolic and combinatorial features of human speech, while basic production mechanisms are shared. Listeners, in contrast, are able learning the meaning of new sounds. A recent study using artificial predator shows that this learning may be extremely rapid. Furthermore, listeners are able to integrate information from multiple sources to make adaptive decisions, which renders the vocal communication system as a whole relatively flexible and powerful. In conclusion, constraints at the side of vocal production, including limits in social cognition and motivation to share experiences, rather than constraints at the side of the recipient explain the differences in communicative abilities between humans and other animals.
It’s not what you look at that matters, it’s what you see
People frequently interpret the same information differently, based on their prior beliefs and views. This may occur in everyday settings, as when two friends are watching the same movie, but also in more consequential circumstances, such as when people interpret the same news differently based on their political views. The role of subjective knowledge in altering how the brain processes narratives has been explored mainly in controlled settings. I will present two projects that examines neural mechanisms underlying narrative interpretation “in the wild” -- how responses differ between two groups of people who interpret the same narrative in two coherent, but opposing ways. In the first project we manipulated participant’s prior knowledge to make them interpret the narrative differently, and found that responses in high-order areas, including the default mode network, language areas and subsets of the mirror neuron system, tend to be similar among people who share the same interpretation, but different from people with an opposing interpretation. In contrast to the active manipulation of participants’ interpretation in the first study, in the second (ongoing) project we examine these processes in a more ecological setting. Taking advantage of people’s natural tendencies to interpret the world through their own (political) filters, we examine these mechanisms while measuring their brain response to political movie clips. These studies are intended to deepen our understanding of the differences in subjective construal processes, by mapping their underlying brain mechanisms.
Neural and computational principles of the processing of dynamic faces and bodies
Body motion is a fundamental signal of social communication. This includes facial as well as full-body movements. Combining advanced methods from computer animation with motion capture in humans and monkeys, we synthesized highly-realistic monkey avatar models. Our face avatar is perceived by monkeys as almost equivalent to a real animal, and does not induce an ‘uncanny valley effect’, unlike all other previously used avatar models in studies with monkeys. Applying machine-learning methods for the control of motion style, we were able to investigate how species-specific shape and dynamic cues influence the perception of human and monkey facial expressions. Human observers showed very fast learning of monkey expressions, and a perceptual encoding of expression dynamics that was largely independent of facial shape. This result is in line with the fact that facial shape evolved faster than the neuromuscular control in primate phylogenesis. At the same time, it challenges popular neural network models of the recognition of dynamic faces that assume a joint encoding of facial shape and dynamics. We propose an alternative physiologically-inspired neural model that realizes such an orthogonal encoding of facial shape and expression from video sequences. As second example, we investigated the perception of social interactions from abstract stimuli, similar to the ones by Heider & Simmel (1944), and also from more realistic stimuli. We developed and validated a new generative model for the synthesis of such social interaction, which is based on a modification of human navigation model. We demonstrate that the recognition of such stimuli, including the perception of agency, can be accounted for by a relatively elementary physiologically-inspired hierarchical neural recognition model, that does not require the assumption of sophisticated inference mechanisms, as postulated by some cognitive theories of social recognition. Summarizing, this suggests that essential phenomena in social cognition might be accounted for by a small set of simple neural principles that can be easily implemented by cortical circuits. The developed technologies for stimulus control form the basis of electrophysiological studies that can verify specific neural circuits, as the ones proposed by our theoretical models.
Mapping social cognition in patients with gliomas: Preoperative and intraoperative insights from fMRI, MEG, and direct electrical stimulation
FENS Forum 2024