Social
social relationships
Ann Kennedy
The Kennedy lab is recruiting for multiple funded postdoctoral positions in theoretical and computational neuroscience, following our recent lab move to Scripps Research in San Diego, CA! Ongoing projects in the lab span topics in: reservoir computing with heterogeneous cell types, reinforcement learning/control theory analysis of complex behavior, neuromechanical whole-organism modeling, diffusion models for imitation learning/forecasting of mouse social interactions, joint analysis/modeling of effects of internal states on neural + vocalization + behavior data. With additional NIH and foundation funding for: characterizing progression of behavioral phenotypes in Parkinson’s, modeling cellular/circuit mechanisms underlying internal state-dependent changes in neural population dynamics, characterizing neural correlates of social relationships across species. Projects are flexible and can be tailored to applicants’ research and training goals, and there are abundant opportunities for new collaboration with local experimental groups. San Diego has a fantastic research community and very high quality of life. Our campus is located at the Pacific coast, at the northern edge of UCSD and not far from the Salk Institute. Postdoctoral stipends are well above NIH guidelines and include a relocation bonus, with research professorship positions available for qualified applicants.
Inter-individual variability in reward seeking and decision making: role of social life and consequence for vulnerability to nicotine
Inter-individual variability refers to differences in the expression of behaviors between members of a population. For instance, some individuals take greater risks, are more attracted to immediate gains or are more susceptible to drugs of abuse than others. To probe the neural bases of inter-individual variability we study reward seeking and decision-making in mice, and dissect the specific role of dopamine in the modulation of these behaviors. Using a spatial version of the multi-armed bandit task, in which mice are faced with consecutive binary choices, we could link modifications of midbrain dopamine cell dynamics with modulation of exploratory behaviors, a major component of individual characteristics in mice. By analyzing mouse behaviors in semi-naturalistic environments, we then explored the role of social relationships in the shaping of dopamine activity and associated beahviors. I will present recent data from the laboratory suggesting that changes in the activity of dopaminergic networks link social influences with variations in the expression of non-social behaviors: by acting on the dopamine system, the social context may indeed affect the capacity of individuals to make decisions, as well as their vulnerability to drugs of abuse, in particular nicotine.
The Social Brain: From Models to Mental Health
Given the complex and dynamic nature of our social relationships, the human brain needs to quickly learn and adapt to new social situations. The breakdown of any of these computations could lead to social deficits, as observed in many psychiatric disorders. In this talk, I will present our recent neurocomputational and intracranial work that attempts to model both 1) how humans dynamically adapt beliefs about other people and 2) how individuals can exert influence over social others through model-based forward thinking. Lastly, I will present our findings of how impaired social computations might manifest in different disorders such as addiction, delusion, and autism. Taken together, these findings reveal the dynamic and proactive nature of human interactions as well as the clinical significance of these high-order social processes.