Sparse
sparse
Sensory cognition
This webinar features presentations from SueYeon Chung (New York University) and Srinivas Turaga (HHMI Janelia Research Campus) on theoretical and computational approaches to sensory cognition. Chung introduced a “neural manifold” framework to capture how high-dimensional neural activity is structured into meaningful manifolds reflecting object representations. She demonstrated that manifold geometry—shaped by radius, dimensionality, and correlations—directly governs a population’s capacity for classifying or separating stimuli under nuisance variations. Applying these ideas as a data analysis tool, she showed how measuring object-manifold geometry can explain transformations along the ventral visual stream and suggested that manifold principles also yield better self-supervised neural network models resembling mammalian visual cortex. Turaga described simulating the entire fruit fly visual pathway using its connectome, modeling 64 key cell types in the optic lobe. His team’s systematic approach—combining sparse connectivity from electron microscopy with simple dynamical parameters—recapitulated known motion-selective responses and produced novel testable predictions. Together, these studies underscore the power of combining connectomic detail, task objectives, and geometric theories to unravel neural computations bridging from stimuli to cognitive functions.
Exploring the Potential of High-Density Data for Neuropsychological Testing with Coregraph
Coregraph is a tool under development that allows us to collect high-density data patterns during the administration of classic neuropsychological tests such as the Trail Making Test and Clock Drawing Test. These tests are widely used to evaluate cognitive function and screen for neurodegenerative disorders, but traditional methods of data collection only yield sparse information, such as test completion time or error types. By contrast, the high-density data collected with Coregraph may contribute to a better understanding of the cognitive processes involved in executing these tests. In addition, Coregraph may potentially revolutionize the field of cognitive evaluation by aiding in the prediction of cognitive deficits and in the identification of early signs of neurodegenerative disorders such as Alzheimer's dementia. By analyzing high-density graphomotor data through techniques like manual feature engineering and machine learning, we can uncover patterns and relationships that would be otherwise hidden with traditional methods of data analysis. We are currently in the process of determining the most effective methods of feature extraction and feature analysis to develop Coregraph to its full potential.
Spatially-embedded recurrent neural networks reveal widespread links between structural and functional neuroscience findings
Brain networks exist within the confines of resource limitations. As a result, a brain network must overcome metabolic costs of growing and sustaining the network within its physical space, while simultaneously implementing its required information processing. To observe the effect of these processes, we introduce the spatially-embedded recurrent neural network (seRNN). seRNNs learn basic task-related inferences while existing within a 3D Euclidean space, where the communication of constituent neurons is constrained by a sparse connectome. We find that seRNNs, similar to primate cerebral cortices, naturally converge on solving inferences using modular small-world networks, in which functionally similar units spatially configure themselves to utilize an energetically-efficient mixed-selective code. As all these features emerge in unison, seRNNs reveal how many common structural and functional brain motifs are strongly intertwined and can be attributed to basic biological optimization processes. seRNNs can serve as model systems to bridge between structural and functional research communities to move neuroscientific understanding forward.
Direction-selective ganglion cells in primate retina: a subcortical substrate for reflexive gaze stabilization?
To maintain a stable and clear image of the world, our eyes reflexively follow the direction in which a visual scene is moving. Such gaze stabilization mechanisms reduce image blur as we move in the environment. In non-primate mammals, this behavior is initiated by ON-type direction-selective ganglion cells (ON-DSGCs), which detect the direction of image motion and transmit signals to brainstem nuclei that drive compensatory eye movements. However, ON-DSGCs have not yet been functionally identified in primates, raising the possibility that the visual inputs that drive this behavior instead arise in the cortex. In this talk, I will present molecular, morphological and functional evidence for identification of an ON-DSGC in macaque retina. The presence of ON-DSGCs highlights the need to examine the contribution of subcortical retinal mechanisms to normal and aberrant gaze stabilization in the developing and mature visual system. More generally, our findings demonstrate the power of a multimodal approach to study sparsely represented primate RGC types.
Network inference via process motifs for lagged correlation in linear stochastic processes
A major challenge for causal inference from time-series data is the trade-off between computational feasibility and accuracy. Motivated by process motifs for lagged covariance in an autoregressive model with slow mean-reversion, we propose to infer networks of causal relations via pairwise edge measure (PEMs) that one can easily compute from lagged correlation matrices. Motivated by contributions of process motifs to covariance and lagged variance, we formulate two PEMs that correct for confounding factors and for reverse causation. To demonstrate the performance of our PEMs, we consider network interference from simulations of linear stochastic processes, and we show that our proposed PEMs can infer networks accurately and efficiently. Specifically, for slightly autocorrelated time-series data, our approach achieves accuracies higher than or similar to Granger causality, transfer entropy, and convergent crossmapping -- but with much shorter computation time than possible with any of these methods. Our fast and accurate PEMs are easy-to-implement methods for network inference with a clear theoretical underpinning. They provide promising alternatives to current paradigms for the inference of linear models from time-series data, including Granger causality, vector-autoregression, and sparse inverse covariance estimation.
Bridging the gap between artificial models and cortical circuits
Artificial neural networks simplify complex biological circuits into tractable models for computational exploration and experimentation. However, the simplification of artificial models also undermines their applicability to real brain dynamics. Typical efforts to address this mismatch add complexity to increasingly unwieldy models. Here, we take a different approach; by reducing the complexity of a biological cortical culture, we aim to distil the essential factors of neuronal dynamics and plasticity. We leverage recent advances in growing neurons from human induced pluripotent stem cells (hiPSCs) to analyse ex vivo cortical cultures with only two distinct excitatory and inhibitory neuron populations. Over 6 weeks of development, we record from thousands of neurons using high-density microelectrode arrays (HD-MEAs) that allow access to individual neurons and the broader population dynamics. We compare these dynamics to two-population artificial networks of single-compartment neurons with random sparse connections and show that they produce similar dynamics. Specifically, our model captures the firing and bursting statistics of the cultures. Moreover, tightly integrating models and cultures allows us to evaluate the impact of changing architectures over weeks of development, with and without external stimuli. Broadly, the use of simplified cortical cultures enables us to use the repertoire of theoretical neuroscience techniques established over the past decades on artificial network models. Our approach of deriving neural networks from human cells also allows us, for the first time, to directly compare neural dynamics of disease and control. We found that cultures e.g. from epilepsy patients tended to have increasingly more avalanches of synchronous activity over weeks of development, in contrast to the control cultures. Next, we will test possible interventions, in silico and in vitro, in a drive for personalised approaches to medical care. This work starts bridging an important theoretical-experimental neuroscience gap for advancing our understanding of mammalian neuron dynamics.
Beyond Biologically Plausible Spiking Networks for Neuromorphic Computing
Biologically plausible spiking neural networks (SNNs) are an emerging architecture for deep learning tasks due to their energy efficiency when implemented on neuromorphic hardware. However, many of the biological features are at best irrelevant and at worst counterproductive when evaluated in the context of task performance and suitability for neuromorphic hardware. In this talk, I will present an alternative paradigm to design deep learning architectures with good task performance in real-world benchmarks while maintaining all the advantages of SNNs. We do this by focusing on two main features – event-based computation and activity sparsity. Starting from the performant gated recurrent unit (GRU) deep learning architecture, we modify it to make it event-based and activity-sparse. The resulting event-based GRU (EGRU) is extremely efficient for both training and inference. At the same time, it achieves performance close to conventional deep learning architectures in challenging tasks such as language modelling, gesture recognition and sequential MNIST.
Nonlinear computations in spiking neural networks through multiplicative synapses
The brain efficiently performs nonlinear computations through its intricate networks of spiking neurons, but how this is done remains elusive. While recurrent spiking networks implementing linear computations can be directly derived and easily understood (e.g., in the spike coding network (SCN) framework), the connectivity required for nonlinear computations can be harder to interpret, as they require additional non-linearities (e.g., dendritic or synaptic) weighted through supervised training. Here we extend the SCN framework to directly implement any polynomial dynamical system. This results in networks requiring multiplicative synapses, which we term the multiplicative spike coding network (mSCN). We demonstrate how the required connectivity for several nonlinear dynamical systems can be directly derived and implemented in mSCNs, without training. We also show how to precisely carry out higher-order polynomials with coupled networks that use only pair-wise multiplicative synapses, and provide expected numbers of connections for each synapse type. Overall, our work provides an alternative method for implementing nonlinear computations in spiking neural networks, while keeping all the attractive features of standard SCNs such as robustness, irregular and sparse firing, and interpretable connectivity. Finally, we discuss the biological plausibility of mSCNs, and how the high accuracy and robustness of the approach may be of interest for neuromorphic computing.
General purpose event-based architectures for deep learning
Biologically plausible spiking neural networks (SNNs) are an emerging architecture for deep learning tasks due to their energy efficiency when implemented on neuromorphic hardware. However, many of the biological features are at best irrelevant and at worst counterproductive when evaluated in the context of task performance and suitability for neuromorphic hardware. In this talk, I will present an alternative paradigm to design deep learning architectures with good task performance in real-world benchmarks while maintaining all the advantages of SNNs. We do this by focusing on two main features -- event-based computation and activity sparsity. Starting from the performant gated recurrent unit (GRU) deep learning architecture, we modify it to make it event-based and activity-sparse. The resulting event-based GRU (EGRU) is extremely efficient for both training and inference. At the same time, it achieves performance close to conventional deep learning architectures in challenging tasks such as language modelling, gesture recognition and sequential MNIST
A Game Theoretical Framework for Quantifying Causes in Neural Networks
Which nodes in a brain network causally influence one another, and how do such interactions utilize the underlying structural connectivity? One of the fundamental goals of neuroscience is to pinpoint such causal relations. Conventionally, these relationships are established by manipulating a node while tracking changes in another node. A causal role is then assigned to the first node if this intervention led to a significant change in the state of the tracked node. In this presentation, I use a series of intuitive thought experiments to demonstrate the methodological shortcomings of the current ‘causation via manipulation’ framework. Namely, a node might causally influence another node, but how much and through which mechanistic interactions? Therefore, establishing a causal relationship, however reliable, does not provide the proper causal understanding of the system, because there often exists a wide range of causal influences that require to be adequately decomposed. To do so, I introduce a game-theoretical framework called Multi-perturbation Shapley value Analysis (MSA). Then, I present our work in which we employed MSA on an Echo State Network (ESN), quantified how much its nodes were influencing each other, and compared these measures with the underlying synaptic strength. We found that: 1. Even though the network itself was sparse, every node could causally influence other nodes. In this case, a mere elucidation of causal relationships did not provide any useful information. 2. Additionally, the full knowledge of the structural connectome did not provide a complete causal picture of the system either, since nodes frequently influenced each other indirectly, that is, via other intermediate nodes. Our results show that just elucidating causal contributions in complex networks such as the brain is not sufficient to draw mechanistic conclusions. Moreover, quantifying causal interactions requires a systematic and extensive manipulation framework. The framework put forward here benefits from employing neural network models, and in turn, provides explainability for them.
Online Training of Spiking Recurrent Neural Networks With Memristive Synapses
Spiking recurrent neural networks (RNNs) are a promising tool for solving a wide variety of complex cognitive and motor tasks, due to their rich temporal dynamics and sparse processing. However training spiking RNNs on dedicated neuromorphic hardware is still an open challenge. This is due mainly to the lack of local, hardware-friendly learning mechanisms that can solve the temporal credit assignment problem and ensure stable network dynamics, even when the weight resolution is limited. These challenges are further accentuated, if one resorts to using memristive devices for in-memory computing to resolve the von-Neumann bottleneck problem, at the expense of a substantial increase in variability in both the computation and the working memory of the spiking RNNs. In this talk, I will present our recent work where we introduced a PyTorch simulation framework of memristive crossbar arrays that enables accurate investigation of such challenges. I will show that recently proposed e-prop learning rule can be used to train spiking RNNs whose weights are emulated in the presented simulation framework. Although e-prop locally approximates the ideal synaptic updates, it is difficult to implement the updates on the memristive substrate due to substantial device non-idealities. I will mention several widely adapted weight update schemes that primarily aim to cope with these device non-idealities and demonstrate that accumulating gradients can enable online and efficient training of spiking RNN on memristive substrates.
Neural Circuit Mechanisms of Pattern Separation in the Dentate Gyrus
The ability to discriminate different sensory patterns by disentangling their neural representations is an important property of neural networks. While a variety of learning rules are known to be highly effective at fine-tuning synapses to achieve this, less is known about how different cell types in the brain can facilitate this process by providing architectural priors that bias the network towards sparse, selective, and discriminable representations. We studied this by simulating a neuronal network modelled on the dentate gyrus—an area characterised by sparse activity associated with pattern separation in spatial memory tasks. To test the contribution of different cell types to these functions, we presented the model with a wide dynamic range of input patterns and systematically added or removed different circuit elements. We found that recruiting feedback inhibition indirectly via recurrent excitatory neurons proved particularly helpful in disentangling patterns, and show that simple alignment principles for excitatory and inhibitory connections are a highly effective strategy.
Reconstructing inhibitory circuits in a damaged brain
Inhibitory interneurons govern the sparse activation of principal cells that permits appropriate behaviors, but they among the most vulnerable to brain damage. Our recent work has demonstrated important roles for inhibitory neurons in disorders of brain development, injury and epilepsy. These studies have motivated our ongoing efforts to understand how these cells operate at the synaptic, circuit and behavioral levels and in designing new technologies targeting specific populations of interneurons for therapy. I will discuss our recent efforts examining the role of interneurons in traumatic brain injury and in designing cell transplantation strategies - based on the generation of new inhibitory interneurons - that enable precise manipulation of inhibitory circuits in the injured brain. I will also discuss our ongoing efforts using monosynaptic virus tracing and whole-brain clearing methods to generate brain-wide maps of inhibitory circuits in the rodent brain. By comprehensively mapping the wiring of individual cell types on a global scale, we have uncovered a fundamental strategy to sustain and optimize inhibition following traumatic brain injury that involves spatial reorganization of local and long-range inputs to inhibitory neurons. These recent findings suggest that brain damage, even when focally restricted, likely has a far broader affect on brain-wide neural function than previously appreciated.
Emergence of homochirality in large molecular systems
The question of the origin of homochirality of living matter, or the dominance of one handedness for all molecules of life across the entire biosphere, is a long-standing puzzle in the research on the Origin of Life. In the fifties, Frank proposed a mechanism to explain homochirality based on the properties of a simple autocatalytic network containing only a few chemical species. Following this work, chemists struggled to find experimental realizations of this model, possibly due to a lack of proper methods to identify autocatalysis [1]. In any case, a model based on a few chemical species seems rather limited, because prebiotic earth is likely to have consisted of complex ‘soups’ of chemicals. To include this aspect of the problem, we recently proposed a mechanism based on certain features of large out-of-equilibrium chemical networks [2]. We showed that a phase transition towards an homochiral state is likely to occur as the number of chiral species in the system becomes large or as the amount of free energy injected into the system increases. Through an analysis of large chemical databases, we showed that there is no need for very large molecules for chiral species to dominate over achiral ones; it already happens when molecules contain about 10 heavy atoms. We also analyzed the various conventions used to measure chirality and discussed the relative chiral signs adopted by different groups of molecules [3]. We then proposed a generalization of Frank’s model for large chemical networks, which we characterized using random matrix theory. This analysis includes sparse networks, suggesting that the emergence of homochirality is a robust and generic transition. References: [1] A. Blokhuis, D. Lacoste, and P. Nghe, PNAS (2020), 117, 25230. [2] G. Laurent, D. Lacoste, and P. Gaspard, PNAS (2021) 118 (3) e2012741118. [3] G. Laurent, D. Lacoste, and P. Gaspard, Proc. R. Soc. A 478:20210590 (2022).
Making a Mesh of Things: Using Network Models to Understand the Mechanics of Heterogeneous Tissues
Networks of stiff biopolymers are an omnipresent structural motif in cells and tissues. A prominent modeling framework for describing biopolymer network mechanics is rigidity percolation theory. This theory describes model networks as nodes joined by randomly placed, springlike bonds. Increasing the amount of bonds in a network results in an abrupt, dramatic increase in elastic moduli above a certain threshold – an example of a mechanical phase transition. While homogeneous networks are well studied, many tissues are made of disparate components and exhibit spatial fluctuations in the concentrations of their constituents. In this talk, I will first discuss recent work in which we explained the structural basis of the shear mechanics of healthy and chemically degraded cartilage by coupling a rigidity percolation framework with a background gel. Our model takes into account collagen concentration, as well as the concentration of peptidoglycans in the surrounding polyelectrolyte gel, to produce a structureproperty relationship that describes the shear mechanics of both sound and diseased cartilage. I will next discuss the introduction of structural correlation in constructing networks, such that sparse and dense patches emerge. I find moderate correlation allows a network to become rigid with fewer bonds, while this benefit is partly erased by excessive correlation. We explain this phenomenon through analysis of the spatial fluctuations in strained networks’ displacement fields. Finally, I will address our work’s implications for non-invasive diagnosis of pathology, as well as rational design of prostheses and novel soft materials.
Do Capuchin Monkeys, Chimpanzees and Children form Overhypotheses from Minimal Input? A Hierarchical Bayesian Modelling Approach
Abstract concepts are a powerful tool to store information efficiently and to make wide-ranging predictions in new situations based on sparse data. Whereas looking-time studies point towards an early emergence of this ability in human infancy, other paradigms like the relational match to sample task often show a failure to detect abstract concepts like same and different until the late preschool years. Similarly, non-human animals have difficulties solving those tasks and often succeed only after long training regimes. Given the huge influence of small task modifications, there is an ongoing debate about the conclusiveness of these findings for the development and phylogenetic distribution of abstract reasoning abilities. Here, we applied the concept of “overhypotheses” which is well known in the infant and cognitive modeling literature to study the capabilities of 3 to 5-year-old children, chimpanzees, and capuchin monkeys in a unified and more ecologically valid task design. In a series of studies, participants themselves sampled reward items from multiple containers or witnessed the sampling process. Only when they detected the abstract pattern governing the reward distributions within and across containers, they could optimally guide their behavior and maximize the reward outcome in a novel test situation. We compared each species’ performance to the predictions of a probabilistic hierarchical Bayesian model capable of forming overhypotheses at a first and second level of abstraction and adapted to their species-specific reward preferences.
NMC4 Short Talk: Multiscale and extended retrieval of associative memory structures in a cortical model of local-global inhibition balance
Inhibitory neurons take on many forms and functions. How this diversity contributes to memory function is not completely known. Previous formal studies indicate inhibition differentiated by local and global connectivity in associative memory networks functions to rescale the level of retrieval of excitatory assemblies. However, such studies lack biological details such as a distinction between types of neurons (excitatory and inhibitory), unrealistic connection schemas, and non-sparse assemblies. In this study, we present a rate-based cortical model where neurons are distinguished (as excitatory, local inhibitory, or global inhibitory), connected more realistically, and where memory items correspond to sparse excitatory assemblies. We use this model to study how local-global inhibition balance can alter memory retrieval in associative memory structures, including naturalistic and artificial structures. Experimental studies have reported inhibitory neurons and their sub-types uniquely respond to specific stimuli and can form sophisticated, joint excitatory-inhibitory assemblies. Our model suggests such joint assemblies, as well as a distribution and rebalancing of overall inhibition between two inhibitory sub-populations – one connected to excitatory assemblies locally and the other connected globally – can quadruple the range of retrieval across related memories. We identify a possible functional role for local-global inhibitory balance to, in the context of choice or preference of relationships, permit and maintain a broader range of memory items when local inhibition is dominant and conversely consolidate and strengthen a smaller range of memory items when global inhibition is dominant. This model therefore highlights a biologically-plausible and behaviourally-useful function of inhibitory diversity in memory.
Norse: A library for gradient-based learning in Spiking Neural Networks
We introduce Norse: An open-source library for gradient-based training of spiking neural networks. In contrast to neuron simulators which mainly target computational neuroscientists, our library seamlessly integrates with the existing PyTorch ecosystem using abstractions familiar to the machine learning community. This has immediate benefits in that it provides a familiar interface, hardware accelerator support and, most importantly, the ability to use gradient-based optimization. While many parallel efforts in this direction exist, Norse emphasizes flexibility and usability in three ways. Users can conveniently specify feed-forward (convolutional) architectures, as well as arbitrarily connected recurrent networks. We strictly adhere to a functional and class-based API such that neuron primitives and, for example, plasticity rules composes. Finally, the functional core API ensures compatibility with the PyTorch JIT and ONNX infrastructure. We have made progress to support network execution on the SpiNNaker platform and plan to support other neuromorphic architectures in the future. While the library is useful in its present state, it also has limitations we will address in ongoing work. In particular, we aim to implement event-based gradient computation, using the EventProp algorithm, which will allow us to support sparse event-based data efficiently, as well as work towards support of more complex neuron models. With this library, we hope to contribute to a joint future of computational neuroscience and neuromorphic computing.
Norse: A library for gradient-based learning in Spiking Neural Networks
Norse aims to exploit the advantages of bio-inspired neural components, which are sparse and event-driven - a fundamental difference from artificial neural networks. Norse expands PyTorch with primitives for bio-inspired neural components, bringing you two advantages: a modern and proven infrastructure based on PyTorch and deep learning-compatible spiking neural network components.
Cognition is Rhythm
Working memory is the sketchpad of consciousness, the fundamental mechanism the brain uses to gain volitional control over its thoughts and actions. For the past 50 years, working memory has been thought to rely on cortical neurons that fire continuous impulses that keep thoughts “online”. However, new work from our lab has revealed more complex dynamics. The impulses fire sparsely and interact with brain rhythms of different frequencies. Higher frequency gamma (>35 Hz) rhythms help carry the contents of working memory while lower frequency alpha/beta (~8-30 Hz) rhythms act as control signals that gate access to and clear out working memory. In other words, a rhythmic dance between brain rhythms may underlie your ability to control your own thoughts.
Imaging neuronal morphology and activity pattern in developing cerebral cortex layer 4
Establishment of precise neuronal connectivity in the neocortex relies on activity-dependent circuit reorganization during postnatal development. In the mouse somatosensory cortex layer 4, barrels are arranged in one-to-one correspondence to whiskers on the face. Thalamocortical axon termini are clustered in the center of each barrel. The layer 4 spiny stellate neurons are located around the barrel edge, extend their dendrites primarily toward the barrel center, and make synapses with thalamocortical axons corresponding to a single whisker. These organized circuits are established during the first postnatal week through activity-dependent refinement processes. However, activity pattern regulating the circuit formation is still elusive. Using two-photon calcium imaging in living neonatal mice, we found that layer 4 neurons within the same barrel fire synchronously in the absence of peripheral stimulation, creating a ''patchwork'' pattern of spontaneous activity corresponding to the barrel map. We also found that disruption of GluN1, an obligatory subunit of the N-methyl-D-aspartate (NMDA) receptor, in a sparse population of layer 4 neurons reduced activity correlation between GluN1 knockout neuron pairs within a barrel. Our results provide evidence for the involvement of layer 4 neuron NMDA receptors in spatial organization of the spontaneous firing activity of layer 4 neurons in the neonatal barrel cortex. In the talk I will introduce our strategy to analyze the role of NMDA receptor-dependent correlated activity in the layer 4 circuit formation.
Introducing YAPiC: An Open Source tool for biologists to perform complex image segmentation with deep learning
Robust detection of biological structures such as neuronal dendrites in brightfield micrographs, tumor tissue in histological slides, or pathological brain regions in MRI scans is a fundamental task in bio-image analysis. Detection of those structures requests complex decision making which is often impossible with current image analysis software, and therefore typically executed by humans in a tedious and time-consuming manual procedure. Supervised pixel classification based on Deep Convolutional Neural Networks (DNNs) is currently emerging as the most promising technique to solve such complex region detection tasks. Here, a self-learning artificial neural network is trained with a small set of manually annotated images to eventually identify the trained structures from large image data sets in a fully automated way. While supervised pixel classification based on faster machine learning algorithms like Random Forests are nowadays part of the standard toolbox of bio-image analysts (e.g. Ilastik), the currently emerging tools based on deep learning are still rarely used. There is also not much experience in the community how much training data has to be collected, to obtain a reasonable prediction result with deep learning based approaches. Our software YAPiC (Yet Another Pixel Classifier) provides an easy-to-use Python- and command line interface and is purely designed for intuitive pixel classification of multidimensional images with DNNs. With the aim to integrate well in the current open source ecosystem, YAPiC utilizes the Ilastik user interface in combination with a high performance GPU server for model training and prediction. Numerous research groups at our institute have already successfully applied YAPiC for a variety of tasks. From our experience, a surprisingly low amount of sparse label data is needed to train a sufficiently working classifier for typical bioimaging applications. Not least because of this, YAPiC has become the "standard weapon” for our core facility to detect objects in hard-to-segement images. We would like to present some use cases like cell classification in high content screening, tissue detection in histological slides, quantification of neural outgrowth in phase contrast time series, or actin filament detection in transmission electron microscopy.
GED: A flexible family of versatile methods for hypothesis-driven multivariate decompositions
Does that title put you to sleep or pique your interest? The goal of my presentation is to introduce a powerful yet under-utilized mathematical equation that is surprisingly effective at uncovering spatiotemporal patterns that are embedded in data -- but that might be inaccessible in traditional analysis methods due to low SNR or sparse spatial distribution. If you flunked calculus, then don't worry: the math is really easy, and I'll spend most of the time discussing intuition, simulations, and applications in real data. I will also spend some time in the beginning of the talk providing a bird's-eye-view of the empirical research in my lab, which focuses on mesoscale brain dynamics associated with error monitoring and response competition.
Sparse expansion in cerebellum favours learning speed and performance in the context of motor control
The cerebellum contains more than half of the brain’s neurons and it is essential for motor control. Its neural circuits have a distinctive architecture comprised of a large, sparse expansion from the input mossy fibres to the granule cell layer. For years, theories of how cerebellar architectural features relate to cerebellar function have been formulated. It has been shown that some of these features can facilitate pattern separation. However, these theories don’t consider the need for it to learn fast in order to control smooth and accurate movements. Here, we confront this gap. This talk will show that the expansion to the granule cell layer in the cerebellar cortex improves learning speed and performance in the context of motor control by considering a cerebellar-like network learning an internal model of a motor apparatus online. By expressing the general form of the learning rate for such a system, this talk will provide a calculation of how increasing the number of granule cells diminishes the effect of noise and increases the learning speed. The researchers propose that the particular architecture of cerebellar circuits modifies the geometry of the error function in a favourable way for learning faster. Their results illuminate a new link between cerebellar structure and function.
The Dark Side of Vision: Resolving the Neural Code
All sensory information – like what we see, hear and smell – gets encoded in spike trains by sensory neurons and gets sent to the brain. Due to the complexity of neural circuits and the difficulty of quantifying complex animal behavior, it has been exceedingly hard to resolve how the brain decodes these spike trains to drive behavior. We now measure quantal signals originating from sparse photons through the most sensitive neural circuits of the mammalian retina and correlate the retinal output spike trains with precisely quantified behavioral decisions. We utilize a combination of electrophysiological measurements on the most sensitive ON and OFF retinal ganglion cell types and a novel deep-learning based tracking technology of the head and body positions of freely-moving mice. We show that visually-guided behavior relies on information from the retinal ON pathway for the dimmest light increments and on information from the retinal OFF pathway for the dimmest light decrements (“quantal shadows”). Our results show that the distribution of labor between ON and OFF pathways starts already at starlight supporting distinct pathway-specific visual computations to drive visually-guided behavior. These results have several fundamental consequences for understanding how the brain integrates information across parallel information streams as well as for understanding the limits of sensory signal processing. In my talk, I will discuss some of the most eminent consequences including the extension of this “Quantum Behavior” paradigm from mouse vision to monkey and human visual systems.
Variability, maintenance and learning in birdsong
The songbird zebra finch is an exemplary model system in which to study trial-and-error learning, as the bird learns its single song gradually through the production of many noisy renditions. It is also a good system in which to study the maintenance of motor skills, as the adult bird actively maintains its song and retains some residual plasticity. Motor learning occurs through the association of timing within the song, represented by sparse firing in nucleus HVC, with motor output, driven by nucleus RA. Here we show through modeling that the small level of observed variability in HVC can result in a network which is more easily able to adapt to change, and is most robust to cell damage or death, than an unperturbed network. In collaboration with Carlos Lois’ lab, we also consider the effect of directly perturbing HVC through viral injection of toxins that affect the firing of projection neurons. Following these perturbations, the song is profoundly affected but is able to almost perfectly recover. We characterize the changes in song acoustics and syntax, and propose models for HVC architecture and plasticity that can account for some of the observed effects. Finally, we suggest a potential role for inputs from nucleus Uva in helping to control timing precision in HVC.
Generalizing theories of cerebellum-like learning
Since the theories of Marr, Ito, and Albus, the cerebellum has provided an attractive well-characterized model system to investigate biological mechanisms of learning. In recent years, theories have been developed that provide a normative account for many features of the anatomy and function of cerebellar cortex and cerebellum-like systems, including the distribution of parallel fiber-Purkinje cell synaptic weights, the expansion in neuron number of the granule cell layer and their synaptic in-degree, and sparse coding by granule cells. Typically, these theories focus on the learning of random mappings between uncorrelated inputs and binary outputs, an assumption that may be reasonable for certain forms of associative conditioning but is also quite far from accounting for the important role the cerebellum plays in the control of smooth movements. I will discuss in-progress work with Marjorie Xie, Samuel Muscinelli, and Kameron Decker Harris generalizing these learning theories to correlated inputs and general classes of smooth input-output mappings. Our studies build on earlier work in theoretical neuroscience as well as recent advances in the kernel theory of wide neural networks. They illuminate the role of pre-expansion structures in processing input stimuli and the significance of sparse granule cell activity. If there is time, I will also discuss preliminary work with Jack Lindsey extending these theories beyond cerebellum-like structures to recurrent networks.
Generalization guided exploration
How do people learn in real-world environments where the space of possible actions can be vast or even infinite? The study of human learning has made rapid progress in past decades, from discovering the neural substrate of reward prediction errors, to building AI capable of mastering the game of Go. Yet this line of research has primarily focused on learning through repeated interactions with the same stimuli. How are humans able to rapidly adapt to novel situations and learn from such sparse examples? I propose a theory of how generalization guides human learning, by making predictions about which unobserved options are most promising to explore. Inspired by Roger Shepard’s law of generalization, I show how a Bayesian function learning model provides a mechanism for generalizing limited experiences to a wide set of novel possibilities, based on the simple principle that similar actions produce similar outcomes. This model of generalization generates predictions about the expected reward and underlying uncertainty of unexplored options, where both are vital components in how people actively explore the world. This model allows us to explain developmental differences in the explorative behavior of children, and suggests a general principle of learning across spatial, conceptual, and structured domains.
Low dimensional models and electrophysiological experiments to study neural dynamics in songbirds
Birdsong emerges when a set of highly interconnected brain areas manage to generate a complex output. The similarities between birdsong production and human speech have positioned songbirds as unique animal models for studying learning and production of this complex motor skill. In this work, we developed a low dimensional model for a neural network in which the variables were the average activities of different neural populations within the nuclei of the song system. This neural network is active during production, perception and learning of birdsong. We performed electrophysiological experiments to record neural activity from one of these nuclei and found that the low dimensional model could reproduce the neural dynamics observed during the experiments. Also, this model could reproduce the respiratory motor patterns used to generate song. We showed that sparse activity in one of the neural nuclei could drive a more complex activity downstream in the neural network. This interdisciplinary work shows how low dimensional neural models can be a valuable tool for studying the emergence of complex motor tasks
Using noise to probe recurrent neural network structure and prune synapses
Many networks in the brain are sparsely connected, and the brain eliminates synapses during development and learning. How could the brain decide which synapses to prune? In a recurrent network, determining the importance of a synapse between two neurons is a difficult computational problem, depending on the role that both neurons play and on all possible pathways of information flow between them. Noise is ubiquitous in neural systems, and often considered an irritant to be overcome. In the first part of this talk, I will suggest that noise could play a functional role in synaptic pruning, allowing the brain to probe network structure and determine which synapses are redundant. I will introduce a simple, local, unsupervised plasticity rule that either strengthens or prunes synapses using only synaptic weight and the noise-driven covariance of the neighboring neurons. For a subset of linear and rectified-linear networks, this rule provably preserves the spectrum of the original matrix and hence preserves network dynamics even when the fraction of pruned synapses asymptotically approaches 1. The plasticity rule is biologically-plausible and may suggest a new role for noise in neural computation. Time permitting, I will then turn to the problem of extracting structure from neural population data sets using dimensionality reduction methods. I will argue that nonlinear structures naturally arise in neural data and show how these nonlinearities cause linear methods of dimensionality reduction, such as Principal Components Analysis, to fail dramatically in identifying low-dimensional structure.
Effective and Efficient Computation with Multiple-timescale Spiking Recurrent Neural Networks
The emergence of brain-inspired neuromorphic computing as a paradigm for edge AI is motivating the search for high-performance and efficient spiking neural networks to run on this hardware. However, compared to classical neural networks in deep learning, current spiking neural networks lack competitive performance in compelling areas. Here, for sequential and streaming tasks, we demonstrate how spiking recurrent neural networks (SRNN) using adaptive spiking neurons are able to achieve state-of-the-art performance compared to other spiking neural networks and almost reach or exceed the performance of classical recurrent neural networks (RNNs) while exhibiting sparse activity. From this, we calculate a 100x energy improvement for our SRNNs over classical RNNs on the harder tasks. We find in particular that adapting the timescales of spiking neurons is crucial for achieving such performance, and we demonstrate the performance for SRNNs for different spiking neuron models.
African Neuroscience: Current Status and Prospects
Understanding the function and dysfunction of the brain remains one of the key challenges of our time. However, an overwhelming majority of brain research is carried out in the Global North, by a minority of well-funded and intimately interconnected labs. In contrast, with an estimated one neuroscientist per million people in Africa, news about neuroscience research from the Global South remains sparse. Clearly, devising new policies to boost Africa’s neuroscience landscape is imperative. However, the policy must be based on accurate data, which is largely lacking. Such data must reflect the extreme heterogeneity of research outputs across the continent’s 54 countries. We have analysed all of Africa’s Neuroscience output over the past 21 years and uniquely verified the work performed in African laboratories. Our unique dataset allows us to gain accurate and in-depth information on the current state of African Neuroscience research, and to put it into a global context. The key findings from this work and recommendations on how African research might best be supported in the future will be discussed.
Cholinergic regulation of learning in the olfactory system
In the olfactory system, cholinergic modulation has been associated with contrast modulation and changes in receptive fields in the olfactory bulb, as well the learning of odor associations in the olfactory cortex. Computational modeling and behavioral studies suggest that cholinergic modulation could improve sensory processing and learning while preventing pro-active interference when task demands are high. However, how sensory inputs and/or learning regulate incoming modulation has not yet been elucidated. We here use a computational model of the olfactory bulb, piriform cortex (PC) and horizontal limb of the diagonal band of Broca (HDB) to explore how olfactory learning could regulate cholinergic inputs to the system in a closed feedback loop. In our model, the novelty of an odor is reflected in firing rates and sparseness of cortical neurons in response to that odor and these firing rates can directly regulate learning in the system by modifying cholinergic inputs to the system.
Untangling the web of behaviours used to produce spider orb webs
Many innate behaviours are the result of multiple sensorimotor programs that are dynamically coordinated to produce higher-order behaviours such as courtship or architecture construction. Extendend phenotypes such as architecture are especially useful for ethological study because the structure itself is a physical record of behavioural intent. A particularly elegant and easily quantifiable structure is the spider orb-web. The geometric symmetry and regularity of these webs have long generated interest in their behavioural origin. However, quantitative analyses of this behaviour have been sparse due to the difficulty of recording web-making in real-time. To address this, we have developed a novel assay enabling real-time, high-resolution tracking of limb movements and web structure produced by the hackled orb-weaver Uloborus diversus. With its small brain size of approximately 100,000 neurons, the spider U. diversus offers a tractable model organism for the study of complex behaviours. Using deep learning frameworks for limb tracking, and unsupervised behavioural clustering methods, we have developed an atlas of stereotyped movement motifs and are investigating the behavioural state transitions of which the geometry of the web is an emergent property. In addition to tracking limb movements, we have developed algorithms to track the web’s dynamic graph structure. We aim to model the relationship between the spider’s sensory experience on the web and its motor decisions, thereby identifying the sensory and internal states contributing to this sensorimotor transformation. Parallel efforts in our group are establishing 2-photon in vivo calcium imaging protocols in this spider, eventually facilitating a search for neural correlates underlying the internal and sensory state variables identified by our behavioural models. In addition, we have assembled a genome, and are developing genetic perturbation methods to investigate the genetic underpinnings of orb-weaving behaviour. Together, we aim to understand how complex innate behaviours are coordinated by underlying neuronal and genetic mechanisms.
Working Memory 2.0
Working memory is the sketchpad of consciousness, the fundamental mechanism the brain uses to gain volitional control over its thoughts and actions. For the past 50 years, working memory has been thought to rely on cortical neurons that fire continuous impulses that keep thoughts “online”. However, new work from our lab has revealed more complex dynamics. The impulses fire sparsely and interact with brain rhythms of different frequencies. Higher frequency gamma (> 35 Hz) rhythms help carry the contents of working memory while lower frequency alpha/beta (~8-30 Hz) rhythms act as control signals that gate access to and clear out working memory. In other words, a rhythmic dance between brain rhythms may underlie your ability to control your own thoughts.
Bias-free estimation of information content in temporally sparse neuronal activity
COSYNE 2022
Recurrent suppression in visual cortex explained by a balanced network with sparse synaptic connections
COSYNE 2022
Recurrent suppression in visual cortex explained by a balanced network with sparse synaptic connections
COSYNE 2022
Sparse coding predicts a spectral bias in the development of V1 receptive fields
COSYNE 2022
Sparse coding predicts a spectral bias in the development of V1 receptive fields
COSYNE 2022
Unsupervised sparse deconvolutional learning of features driving neural activity
COSYNE 2022
Unsupervised sparse deconvolutional learning of features driving neural activity
COSYNE 2022
The cortical dictionary: high-capacity memory in sparsely connected networks with columnar organization
COSYNE 2023
Eigenvalue spectral properties of sparse random matrices for neural networks
COSYNE 2023
maskNMF: a denoise-sparsen-detect pipeline for demixing dense imaging data faster than real time
COSYNE 2023
Representational drift leads to sparse activity solutions that are robust to noise and learning
COSYNE 2023
Sparse Component Analysis: An interpretable dimensionality reduction tool that identifies building blocks of neural computation
COSYNE 2023
Neural backtracking: A biological mechanism for generative recall via sparse and distributed coding
COSYNE 2025
Sparse autoencoders for mechanistic insights on neural computation in naturalistic experiments
COSYNE 2025
Sparse neural engagement in connectome-based reservoir computing networks
COSYNE 2025
Environmental enrichment promotes sparse coding in hippocampus via increased dendritic inhibition
FENS Forum 2024
Hippocampal place field formation by sparse, local learning of visual features in virtual reality
FENS Forum 2024
Sparse stress-responsive neurons predominate the pathogenesis of depression-like state
FENS Forum 2024
Sparse stress ensembles predominate the pathogenesis of depression-like state
FENS Forum 2024
Sparse and unique functional innervation of barrel cortex onto single projection neurons in dorsal striatum and its plasticity after sensorimotor learning
FENS Forum 2024
Sparse Component Analysis: An interpretable dimensionality reduction tool that identifies building blocks of neural computation
Neuromatch 5