← Back

Spatial

Topic spotlight
TopicWorld Wide

spatial organization

Discover seminars, jobs, and research tagged with spatial organization across World Wide.
8 curated items5 Seminars3 ePosters
Updated over 1 year ago
8 items · spatial organization
8 results
SeminarNeuroscience

Spatial Organization of Cellular Reactive States in Human Brain Cancer

Sten Linnarsson
Karolinska Institute Sweden
May 21, 2024
SeminarNeuroscienceRecording

Orientation selectivity in rodent V1: theory vs experiments

German Mato
CONICET, Bariloche
Feb 14, 2023

Neurons in the primary visual cortex (V1) of rodents are selective to the orientation of the stimulus, as in other mammals such as cats and monkeys. However, in contrast with those species, their neurons display a very different type of spatial organization. Instead of orientation maps they are organized in a “salt and pepper” pattern, where adjacent neurons have completely different preferred orientations. This structure has motivated both experimental and theoretical research with the objective of determining which aspects of the connectivity patterns and intrinsic neuronal responses can explain the observed behavior. These analysis have to take into account also that the neurons of the thalamus that send their outputs to the cortex have more complex responses in rodents than in higher mammals, displaying, for instance, a significant degree of orientation selectivity. In this talk we present work showing that a random feed-forward connectivity pattern, in which the probability of having a connection between a cortical neuron and a thalamic neuron depends only on the relative distance between them is enough explain several aspects of the complex phenomenology found in these systems. Moreover, this approach allows us to evaluate analytically the statistical structure of the thalamic input on the cortex. We find that V1 neurons are orientation selective but the preferred orientation of the stimulus depends on the spatial frequency of the stimulus. We disentangle the effect of the non circular thalamic receptive fields, finding that they control the selectivity of the time-averaged thalamic input, but not the selectivity of the time locked component. We also compare with experiments that use reverse correlation techniques, showing that ON and OFF components of the aggregate thalamic input are spatially segregated in the cortex.

SeminarNeuroscience

The functional connectome across temporal scales

Sepideh Sadaghiani
Assistant Professor, University of Illinois, USA
Mar 29, 2022

The view of human brain function has drastically shifted over the last decade, owing to the observation that the majority of brain activity is intrinsic rather than driven by external stimuli or cognitive demands. Specifically, all brain regions continuously communicate in spatiotemporally organized patterns that constitute the functional connectome, with consequences for cognition and behavior. In this talk, I will argue that another shift is underway, driven by new insights from synergistic interrogation of the functional connectome using different acquisition methods. The human functional connectome is typically investigated with functional magnetic resonance imaging (fMRI) that relies on the indirect hemodynamic signal, thereby emphasizing very slow connectivity across brain regions. Conversely, more recent methodological advances demonstrate that fast connectivity within the whole-brain connectome can be studied with real-time methods such as electroencephalography (EEG). Our findings show that combining fMRI with scalp or intracranial EEG in humans, especially when recorded concurrently, paints a rich picture of neural communication across the connectome. Specifically, the connectome comprises both fast, oscillation-based connectivity observable with EEG, as well as extremely slow processes best captured by fMRI. While the fast and slow processes share an important degree of spatial organization, these processes unfold in a temporally independent manner. Our observations suggest that fMRI and EEG may be envisaged as capturing distinct aspects of functional connectivity, rather than intermodal measurements of the same phenomenon. Infraslow fluctuation-based and rapid oscillation-based connectivity of various frequency bands constitute multiple dynamic trajectories through a shared state space of discrete connectome configurations. The multitude of flexible trajectories may concurrently enable functional connectivity across multiple independent sets of distributed brain regions.

SeminarNeuroscience

Imaging neuronal morphology and activity pattern in developing cerebral cortex layer 4

Hidenobu Mizuno
Kumamoto University, Japan
Oct 26, 2021

Establishment of precise neuronal connectivity in the neocortex relies on activity-dependent circuit reorganization during postnatal development. In the mouse somatosensory cortex layer 4, barrels are arranged in one-to-one correspondence to whiskers on the face. Thalamocortical axon termini are clustered in the center of each barrel. The layer 4 spiny stellate neurons are located around the barrel edge, extend their dendrites primarily toward the barrel center, and make synapses with thalamocortical axons corresponding to a single whisker. These organized circuits are established during the first postnatal week through activity-dependent refinement processes. However, activity pattern regulating the circuit formation is still elusive. Using two-photon calcium imaging in living neonatal mice, we found that layer 4 neurons within the same barrel fire synchronously in the absence of peripheral stimulation, creating a ''patchwork'' pattern of spontaneous activity corresponding to the barrel map. We also found that disruption of GluN1, an obligatory subunit of the N-methyl-D-aspartate (NMDA) receptor, in a sparse population of layer 4 neurons reduced activity correlation between GluN1 knockout neuron pairs within a barrel. Our results provide evidence for the involvement of layer 4 neuron NMDA receptors in spatial organization of the spontaneous firing activity of layer 4 neurons in the neonatal barrel cortex. In the talk I will introduce our strategy to analyze the role of NMDA receptor-dependent correlated activity in the layer 4 circuit formation.

SeminarPhysics of LifeRecording

How polymer-loop-extruding motors shape chromosomes

Ed Banigan
MIT
Sep 12, 2021

Chromosomes are extremely long, active polymers that are spatially organized across multiple scales to promote cellular functions, such as gene transcription and genetic inheritance. During each cell cycle, chromosomes are dramatically compacted as cells divide and dynamically reorganized into less compact, spatiotemporally patterned structures after cell division. These activities are facilitated by DNA/chromatin-binding protein motors called SMC complexes. Each of these motors can perform a unique activity known as “loop extrusion,” in which the motor binds the DNA/chromatin polymer, reels in the polymer fiber, and extrudes it as a loop. Using simulations and theory, I show how loop-extruding motors can collectively compact and spatially organize chromosomes in different scenarios. First, I show that loop-extruding complexes can generate sufficient compaction for cell division, provided that loop-extrusion satisfies stringent physical requirements. Second, while loop-extrusion alone does not uniquely spatially pattern the genome, interactions between SMC complexes and protein “boundary elements” can generate patterns that emerge in the genome after cell division. Intriguingly, these “boundary elements” are not necessarily stationary, which can generate a variety of patterns in the neighborhood of transcriptionally active genes. These predictions, along with supporting experiments, show how SMC complexes and other molecular machinery, such as RNA polymerase, can spatially organize the genome. More generally, this work demonstrates both the versatility of the loop extrusion mechanism for chromosome functional organization and how seemingly subtle microscopic effects can emerge in the spatiotemporal structure of nonequilibrium polymers.

ePoster

Disentangling the spatial organization of the mossy fiber to granule cell synapse in the cerebellar cortex

Alice Basile, Frédéric Doussau, Stéphane Ory, Pierre Hener, Sebahat Ozkan, Stéphane Gasman, Philippe Isope

FENS Forum 2024

ePoster

Mapping spatial organization of functional inputs

Vincenzo Regio, Dario Cupolillo, Andrea Barberis

FENS Forum 2024

ePoster

Spatial organization of behavioral signals across the mouse visual cortex

Ali Haydaroglu, Michael Krumin, Jingkun Guo, Alipasha Vaziri, Kenneth Harris, Matteo Carandini

FENS Forum 2024