Speakers
speakers
various speakers
How can we shift research culture to drive Credibility in Neuroscience?
This webinar will demonstrate changes that are already happening at individual, institutional and funder level to shift research culture toward supporting credible research, and will allow attendees working in neuroscience to ask further questions to our speakers. Our panel of speakers, chaired by Ana Dorrego-Rivas: Emily Farran, Professor in Developmental Psychology and Academic Lead Research Culture and Integrity at the University of Surrey Rosa Sancho, Head of Research at Alzheimer's Research UK Sepideh Keshavarzi, Senior Research Fellow at the Sainsbury Wellcome Centre
ISYNC: International SynAGE Conference on Healthy Ageing
The SynAGE committee members are thrilled to host ISYNC, the International SynAGE conference on healthy ageing, on 28-30 March 2022 in Magdeburg, Germany. This conference has been entirely organised from young scientists of the SynAGE research training group RTG 2413 (www.synage.de) and represents a unique occasion for researchers from all over the world to bring together and join great talks and sessions with us and our guests. A constantly updated list of our speakers can be found on the conference webpage: www.isync-md.de. During the conference, attendees will have access to a range of symposia which will deal with Glia, Biomarkers and Immunoresponses during ageing to neurodegeneration brain integrity and cognitive function in health and diseases. Moreover, the conference will offer social events especially for young researchers and the possibility to network together in a beautiful and suggestive location where our conference will take place: the Johanniskirche. The event will be happening in person, but due to the current pandemic situation and restrictions we are planning the conference as a hybrid event with lots of technical support to ensure that every participant can follow the talks and take part in the scientific discussions. The registration to our ISYNC conference is free of charge. However, the number of people attending the conference in person is restricted to 100. Afterwards, registrations will be accepted for joining virtually only. The registration is open until 15.02.2022. Especially for PhD and MD Students: Check our available Travel Grants, Poster Prize and SynAGE Award Dinner: https://www.isync-md.de/index.php/phd-md-specials/ If you need any further information don’t hesitate to contact us via email: contact@synage.de. We are looking forward to meet you in 2022 in Magdeburg to discuss about our research and ideas and bless together science. Your ISYNC organization Committee
The Brain Conference (the Guarantors of Brain)
Join the Brain Conference on 24-25 February 2022 for the opportunity to hear from neurology’s leading scientists and clinicians. The two-day virtual programme features clinical teaching talks and research presentations from expert speakers including neuroscientist Professor Gina Poe, and the winner of the 2021 Brain Prize, neurologist Professor Peter Goadsby." "Tickets for The Brain Conference 2022 cost just £30, but register with promotional code BRAINCONEM20 for a discounted rate of £25.
The Brain Conference (the Guarantors of Brain)
Join the Brain Conference on 24-25 February 2022 for the opportunity to hear from neurology’s leading scientists and clinicians. The two-day virtual programme features clinical teaching talks and research presentations from expert speakers including neuroscientist Professor Gina Poe, and the winner of the 2021 Brain Prize, neurologist Professor Peter Goadsby." "Tickets for The Brain Conference 2022 cost just £30, but register with promotional code BRAINCONEM20 for a discounted rate of £25.
Towards an inclusive neurobiology of language
Understanding how our brains process language is one of the fundamental issues in cognitive science. In order to reach such understanding, it is critical to cover the full spectrum of manners in which humans acquire and experience language. However, due to a myriad of socioeconomic factors, research has disproportionately focused on monolingual English speakers. In this talk, I present a series of studies that systematically target fundamental questions about bilingual language use across a range of conversational contexts, both in production and comprehension. The results lay the groundwork to propose a more inclusive theory of the neurobiology of language, with an architecture that assumes a common selection principle at each linguistic level and can account for attested features of both bilingual and monolingual speech in, but crucially also out of, experimental settings.
NMC4 Event: NMC For Kids
We at Neuromatch 4.0 wish to open up science conferences to everyone and that is why we have included a session for kids and the young at heart. The NMC for kids has three excellent speakers from around the globe to talk about the balance system from bird butts to space: 1. Birds balance with their butts” by Bing Wen Brunton (Associate Prof of Biology at University of Washington, Seattle) 2. “The brain in motion” by Jenifer L. Campos (Associate Prof, University of Toronto) 3. “Getting ready for Mars: what happens to the brain in space?” By Elisa R Ferre (Senior Lecturer, Birkbeck University of London)
NeurotechRI Kickoff Meeting
The digital kickoff of NeurotechRI will take place on the 26th from 13:00 to 16:00 (CET). Come and join us as we discuss our plans for the Graduate School and our research and innovation roadmap! The programme can be downloaded here. Don’t miss out on our Board of Governors presentation of the project and the synergies with NeurotechEU, meet with our keynote speakers from the European Research Executive Agency: Mr Stijn Delaure (DG R&I, Unit A3 “R&I Actors and Research Careers”) and Ms Marta Truco Calbet (DG R&I, Unit C.4 "Reforming European R&I and Research Infrastructures''). Last but not least, the day will finish with a roundtable discussion organised by our students society. The roundtable will be an open space and an opportunity for all students to discuss their needs in education. Registration is open: www.crowdcast.io/e/neurotechri-kickoff
Looking and listening while moving
In this talk I’ll discuss our recent work on how visual and auditory cues to space are integrated as we move. There are at least 3 reasons why this turns out to be a difficult problem for the brain to solve (and us to understand!). First, vision and hearing start off in different coordinates (eye-centred vs head-centred), so they need a common reference frame in which to communicate. By preventing eye and head movements, this problem has been neatly sidestepped in the literature, yet self-movement is the norm. Second, self-movement creates visual and auditory image motion. Correct interpretation therefore requires some form of compensation. Third, vision and hearing encode motion in very different ways: vision contains dedicated motion detectors sensitive to speed, whereas hearing does not. We propose that some (all?) of these problems could be solved by considering the perception of audiovisual space as the integration of separate body-centred visual and auditory cues, the latter formed by integrating image motion with motor system signals and vestibular information. To test this claim, we use a classic cue integration framework, modified to account for cues that are biased and partially correlated. We find good evidence for the model based on simple judgements of audiovisual motion within a circular array of speakers and LEDs that surround the participant while they execute self-controlled head movement.
Can connectomics help us understand the brain and sustain the revolution in AI?
3 short talks and a panel discussion on the topic of "Can connectomics help us understand the brain and sustain the revolution in AI?" Expect beautiful connectomics data, provocative dreaming, realistic critiques and everything in between. Students & post-docs, stay on to meet our 3 amazing speakers. Moderator: Dr Greg Jefferis https://www2.mrc-lmb.cam.ac.uk/group-leaders/h-to-m/gregory-jefferis/
The Jena Voice Learning and Memory Test (JVLMT)
The ability to recognize someone’s voice spans a broad spectrum with phonagnosia on the low end and super recognition at the high end. Yet there is no standardized test to measure the individual ability to learn and recognize newly-learnt voices with samples of speech-like phonetic variability. We have developed the Jena Voice Learning and Memory Test (JVLMT), a 20 min-test based on item response theory and applicable across different languages. The JVLMT consists of three phases in which participants are familiarized with eight speakers in two stages and then perform a three-alternative forced choice recognition task, using pseudo sentences devoid of semantic content. Acoustic (dis)similarity analyses were used to create items with different levels of difficulty. Test scores are based on 22 Rasch-conform items. Items were selected and validated in online studies based on 232 and 454 participants, respectively. Mean accuracy is 0.51 with an SD of .18. The JVLMT showed high and moderate correlations with convergent validation tests (Bangor Voice Matching Test; Glasgow Voice Memory Test) and a weak correlation with a discriminant validation test (Digit Span). Empirical (marginal) reliability is 0.66. Four participants with super recognition (at least 2 SDs above the mean) and 7 participants with phonagnosia (at least 2 SDs below the mean) were identified. The JVLMT is a promising screen too for voice recognition abilities in a scientific and neuropsychological context.
The 2021 Annual Bioengineering Lecture + Bioinspired Guidance, Navigation and Control Symposium
Join the Department of Bioengineering on the 26th May at 9:00am for The 2021 Annual Bioengineering Lecture + Bioinspired Guidance, Navigation and Control Symposium. This year’s lecture speaker will be distinguished bioengineer and neuroscientist Professor Mandyam V. Srinivasan AM FRS, from the University of Queensland. Professor Srinivasan studies visual systems, particularly those of bees and birds. His research has revealed how flying insects negotiate narrow gaps, regulate the height and speed of flight, estimate distance flown, and orchestrate smooth landings. Apart from enhancing fundamental knowledge, these findings are leading to novel, biologically inspired approaches to the design of guidance systems for unmanned aerial vehicles with applications in the areas of surveillance, security and planetary exploration. Following Professor Srinivasan’s lecture will be the Bioinspired GNC Mini Symposium with guest speakers from Google Deepmind, Imperial College London, the University of Würzburg and the University of Konstanz giving talks on their research into autonomous robot navigation, neural mechanisms of compass orientation in insects and computational approaches to motor control.
Annual half day event - four speakers and panel discussion
Brain Awareness Week by IIT Gandhinagar
The Brain Awareness Week by the Centre for Cognitive and Brain Sciences, IIT Gandhinagar spans across 7 days and invites you for a series of talks, panel discussions, competitions and workshops on topics ranging from 'Using songbirds to understand how the brain initiates movements' to 'Cognitive Science and UX in Game Design' by speakers from prestigious Indian and International institutes. Explore the marvels of the brain by joining us on 15th March. Free Registration.
Students to Professors: Inspiring NeurotechEU Women
The NeurotechEU student councils invites you to a special event on the occasion of the International Women's Day. 15 different speakers from very different backgrounds, seniority and expertise will share their experience on women in science, from students, to professeurs, to researchers, to the European Commission, discover their very unique insights.
Kamala Harris and the Construction of Complex Ethnolinguistic Political Identity
Over the past 50 years, sociolinguistic studies on black Americans have expanded in both theoretical and technical scope, and newer research has moved beyond seeing speakers, especially black speakers, as a monolithic sociolinguistic community (Wolfram 2007, Blake 2014). Yet there remains a dearth of critical work on complex identities existing within black American communities as well as how these identities are reflected and perceived in linguistic practice. At the same time, linguists have begun to take greater interest in the ways in which public figures, such as politicians, may illuminate the wider social meaning of specific linguistic variables. In this talk, I will present results from analyses of multiple aspects of ethnolinguistic variation in the speech of Vice President Kamala Harris during the 2019-2020 Democratic Party Primary debates. Together, these results show how VP Harris expertly employs both enregistered and subtle linguistic variables, including aspects of African American Language morphosyntax, vowels, and intonational phonology in the construction and performance of a highly specific sociolinguistic identity that reflects her unique positions politically, socially, and racially. The results of this study expand our knowledge about how the complexities of speaker identity are reflected in sociolinguistic variation, as well as press on the boundaries of what we know about how speakers in the public sphere use variation to reflect both who they are and who we want them to be.
SARC-CoV-2 modeling: What have we learned from this pandemic about how (not) to model disease spread?
The SARS-CoV-2 pandemic is awash in data, including daily, spatially-resolved COVID case data, virus sequence data, patients `omics data, and mobility data. Journals are now also awash in studies that make use of quantitative modeling approaches to gain insight into the geographic spread of SARS-CoV-2 and its temporal dynamics, as well as studies that predict the impact of control strategies on SARS-CoV-2 circulation. Some, but by no means all, of these studies are informed by the massive amounts of available data. Some, but by no means all, of these studies have been useful — in that their predictions revealed something beyond simple back of the envelope calculations. To summarize some of these findings, in this symposium, we will address questions such as: What do we want from models of disease spread? What can and should be predicted? Which data are the most useful for predictions? When do we need mechanistic models? What have we learned about how to model disease spread from unmet and/or conflicting predictions? The workshop speakers will explore these questions from different perspectives on what data need to be considered and how models can be evaluated. As at other TMLS workshops, each speaker will deliver a 10-minute talk with ample time set aside for moderated questions/discussion. We expect the talks to be provocative and bold, while respecting different perspectives.
Simons-Emory Workshop on Neural Dynamics: What could neural dynamics have to say about neural computation, and do we know how to listen?
Speakers will deliver focused 10-minute talks, with periods reserved for broader discussion on topics at the intersection of neural dynamics and computation. Organizer & Moderator: Chethan Pandarinath - Emory University and Georgia Tech Speakers & Discussants: Adrienne Fairhall - U Washington Mehrdad Jazayeri - MIT John Krakauer - John Hopkins Francesca Mastrogiuseppe - Gatsby / UCL Abigail Person - U Colorado Abigail Russo - Princeton Krishna Shenoy - Stanford Saurabh Vyas - Columbia
3rd Annual Conference on Quantitative Approaches in Biology
This conference is a free event that includes a range of activities to stimulate the cross-fertilization of ideas, including invited speaker talks, workshops, micro talks, an undergraduate research competition, a contest to discover mathematical questions in biology, and plenty of networking opportunities. Today's speakers: Cassandra Extavour, William Bialek, Amy Shyer, Ankur Saxena, Jie Liang
3rd Annual Conference on Quantitative Approaches in Biology
This conference is a free event that includes a range of activities to stimulate the cross-fertilization of ideas, including invited speaker talks, workshops, micro talks, an undergraduate research competition, a contest to discover mathematical questions in biology, and plenty of networking opportunities. Today's speakers: Nathalie Dostatni, Christopher Obara, Hernan Garcia, Aaron Dinner, David Lubensky, Jianping Fu
Panel discussion: Practical advice for reproducibility in neuroscience
This virtual, interactive panel on reproducibility in neuroscience will focus on practical advice that researchers at all career stages could implement to improve the reproducibility of their work, from power analyses and pre-registering reports to selecting statistical tests and data sharing. The event will comprise introductions of our speakers and how they came to be advocates for reproducibility in science, followed by a 25-minute discussion on reproducibility, including practical advice for researchers on how to improve their data collection, analysis, and reporting, and then 25 minutes of audience Q&A. In total, the event will last one hour and 15 minutes. Afterwards, some of the speakers will join us for an informal chat and Q&A reserved only for students/postdocs.
On being the right size: Is the search for underlying physical principles a wild-goose chase?
When was the last time you ran into a giant? Chances are never. Almost 100 years ago, JBS Haldane posed an outwardly simple yet complex question – what is the most optimal size (for a biological system)? The living world around us contains a huge diversity of organisms, each with its own characteristic size. Even the size of subcellular organelles is tightly controlled. In absence of physical rulers, how do cells and organisms truly “know” how large is large enough? What are the mechanisms in place to enforce size control? Many of these questions have motivated generations of scientists to look for physical principles underlying size control in biological systems. In the next edition of Emory's Theory and Modeling of Living Systems (TMLS) workshop series, our panel of speakers will take a close look at these questions, across the entire scale - from the molecular, all the way to the ecosystem.
Neurological consequences of COVID-19
The speakers will outline how neurologists in Bristol have been research-active during the COVID-19 pandemic including our contribution to national and international surveillance programmes as well as initiating research studies such as an evaluation of the impact of COVID anxiety on sleep and neurodegeneration and determining whether vascular changes in the eye predict COVID-19 severity.
Biology is “messy”. So how can we take theory in biology seriously and plot predictions and experiments on the same axes?
Many of us came to biology from physics. There we have been trained on such classic examples as muon g-2, where experimental data and theoretical predictions agree to many significant digits. Now, working in biology, we routinely hear that it is messy, most details matter, and that the best hope for theory in biology is to be semi-qualitative, predict general trends, and to forgo the hope of ever making quantitative predictions with the precision that we are used to in physics. Colloquially, we should be satisfied even if data and models differ so much that plotting them on the same plot makes little sense. However, some of us won’t be satisfied by this. So can we take theory in biology seriously and predict experimental outcomes within (small) error bars? Certainly, we won’t be able to predict everything, but this is never required, even in traditional physics. But we should be able to choose some features of data that are nontrivial and interesting, and focus on them. We also should be able to find different classes of models --- maybe even null models --- that match biology better, and thus allow for a better agreement. It is even possible that large-dimensional datasets of modern high-throughput experiments, and the ensuing “more is different” statistical physics style models will make quantitative, precise theory easier. To explore the role of quantitative theory in biology, in this workshop, eight speakers will address some of the following general questions based on their specific work in different corners of biology: Which features of biological data are predictable? Which types of models are best suited to making quantitative predictions in different fields? Should theorists interested in quantitative predictions focus on different questions, not typically asked by biologists? Do large, multidimensional datasets make theories (and which theories?) more or less likely to succeed? This will be an unapologetically theoretical physics workshop — we won’t focus on a specific subfield of biology, but will explore these questions across the fields, hoping that the underlying theoretical frameworks will help us find the missing connections.
(What) can soft matter physics teach us about biological function?
The “soft, active, and living matter” community has grown tremendously in recent years, conducting exciting research at the interface between soft matter and biological systems. But are all living systems also soft matter systems? Do the ideas of function (or purpose) in biological systems require us to introduce deep new ideas into the framework of soft matter theories? Does the (often) qualitatively different character of data in biological experiments require us to change the types of experiments we conduct and the goals of our theoretical treatments? Eight speakers will anchor the workshop, exploring these questions across a range of biological system scales. Each speaker will deliver a 10-minute talk with another 10 minutes set aside for moderated questions/discussion. We expect the talks to be broad, bold, and provocative, discussing both the nature of the theoretical tools and experimental techniques we have at present and also those we think we will ultimately need to answer deep questions at the interface of soft matter and biology.
Inaugural Simons-Emory Symposium On Motor Control: "What tools are we missing to understand motor control? What could we learn if we had them
This is the inaugural symposium of the Simons-Emory International Consortium on Motor Control, and speakers will deliver 10 minute talks (each followed by 10 minutes of discussion) addressing this question: "What tools are we missing to understand motor control, and what could we learn if we had them?”
Mini-symposium on the Neuroscience of Cognitive Development
Speakers will highlight research on the developmental processes underlying cognitive control and the effects of environmental risk factors on neural pathways in human cognitive development. Gaia Scerif, from University of Oxford, will be giving a talk on Using developmental cognitive neuroscience tools to investigate mechanisms of atypical cognitive control, followed by Kirsten Donald, from University of Cape Town, who will give a talk titled Neuroimaging the very young high risk brain: lessons from a south African birth cohort.
Can machine learning learn new physics, or do we need to put it in by hand?"\
There has been a surge of publications on using machine learning (ML) on experimental data from physical systems: social, biological, statistical, and quantum. However, can these methods discover fundamentally new physics? It can be that their biggest impact is in better data preprocessing, while inferring new physics is unrealistic without specifically adapting the learning machine to find what we are looking for — that is, without the “intuition” — and hence without having a good a priori guess about what we will find. Is machine learning a useful tool for physics discovery? Which minimal knowledge should we endow the machines with to make them useful in such tasks? How do we do this? Eight speakers below will anchor the workshop, exploring these questions in contexts of diverse systems (from quantum to biological), and from general theoretical advances to specific applications. Each speaker will deliver a 10 min talk with another 10 minutes set aside for moderated questions/discussion. We expect the talks to be broad, bold, and provocative, discussing where the field is heading, and what is needed to get us there.
Physics of Behavior: Now that we can track (most) everything, what can we do with the data?
We will organize the workshop around one question: “Now that we can track (most) everything, what can we do with the data?” Given the recent dramatic advances in technology, we now have behavioral data sets with orders of magnitude more accuracy, dimensionality, diversity, and size than we had even a few years ago. That being said, there is still little agreement as to what theoretical frameworks can inform our understanding of these data sets and suggest new experiments we can perform. We hope that after this workshop we’ll see a variety of new ideas and perhaps gain some inspiration. We have invited eight speakers, each studying different systems, scales, and topics, to provide 10 minute presentations focused on the above question, with another 10 minutes set aside for questions/discussions (moderated by the two of us). Although we naturally expect speakers to include aspects of their own work, we have encouraged all of them to think broadly and provocatively. We are also hoping to organize some breakout sessions after the talks so that we can have some more expanded discussions about topics arising during the meeting.
Functional characterization of human iPSC-derived neurons at single-cell resolution
Recent developments in induced pluripotent stem cell (iPSC) technology have enabled easier access to human cells in vitro. With increasing availability of human iPSC-derived neurons, both healthy and disease cell lines, screening compounds for neurodegenerative diseases on human cells can potentially be performed in the earlier stages of drug discovery. To accelerate the functional characterization of iPSC-derived neurons and the effect of compounds, reproducible and relevant results are necessary. In this webinar, the speakers will: Introduce high-resolution functional imaging of human iPSC-derived neurons Showcase how to extract functional features of hundreds of cells in a cell culture sample label-free Discuss electrophysiological parameters for characterizing the differences among several human neuronal cell lines