Species
species
Astrocytes: From Metabolism to Cognition
Different brain cell types exhibit distinct metabolic signatures that link energy economy to cellular function. Astrocytes and neurons, for instance, diverge dramatically in their reliance on glycolysis versus oxidative phosphorylation, underscoring that metabolic fuel efficiency is not uniform across cell types. A key factor shaping this divergence is the structural organization of the mitochondrial respiratory chain into supercomplexes. Specifically, complexes I (CI) and III (CIII) form a CI–CIII supercomplex, but the degree of this assembly varies by cell type. In neurons, CI is predominantly integrated into supercomplexes, resulting in highly efficient mitochondrial respiration and minimal reactive oxygen species (ROS) generation. Conversely, in astrocytes, a larger fraction of CI remains unassembled, freely existing apart from CIII, leading to reduced respiratory efficiency and elevated mitochondrial ROS production. Despite this apparent inefficiency, astrocytes boast a highly adaptable metabolism capable of responding to diverse stressors. Their looser CI–CIII organization allows for flexible ROS signaling, which activates antioxidant programs via transcription factors like Nrf2. This modular architecture enables astrocytes not only to balance energy production but also to support neuronal health and influence complex organismal behaviors.
Computational modelling of ocular pharmacokinetics
Pharmacokinetics in the eye is an important factor for the success of ocular drug delivery and treatment. Pharmacokinetic features determine the feasible routes of drug administration, dosing levels and intervals, and it has impact on eventual drug responses. Several physical, biochemical, and flow-related barriers limit drug exposure of anterior and posterior ocular target tissues during treatment during local (topical, subconjunctival, intravitreal) and systemic administration (intravenous, per oral). Mathematical models integrate joint impact of various barriers on ocular pharmacokinetics (PKs) thereby helping drug development. The models are useful in describing (top-down) and predicting (bottom-up) pharmacokinetics of ocular drugs. This is useful also in the design and development of new drug molecules and drug delivery systems. Furthermore, the models can be used for interspecies translation and probing of disease effects on pharmacokinetics. In this lecture, ocular pharmacokinetics and current modelling methods (noncompartmental analyses, compartmental, physiologically based, and finite element models) are introduced. Future challenges are also highlighted (e.g. intra-tissue distribution, prediction of drug responses, active transport).
Vision for perception versus vision for action: dissociable contributions of visual sensory drives from primary visual cortex and superior colliculus neurons to orienting behaviors
The primary visual cortex (V1) directly projects to the superior colliculus (SC) and is believed to provide sensory drive for eye movements. Consistent with this, a majority of saccade-related SC neurons also exhibit short-latency, stimulus-driven visual responses, which are additionally feature-tuned. However, direct neurophysiological comparisons of the visual response properties of the two anatomically-connected brain areas are surprisingly lacking, especially with respect to active looking behaviors. I will describe a series of experiments characterizing visual response properties in primate V1 and SC neurons, exploring feature dimensions like visual field location, spatial frequency, orientation, contrast, and luminance polarity. The results suggest a substantial, qualitative reformatting of SC visual responses when compared to V1. For example, SC visual response latencies are actively delayed, independent of individual neuron tuning preferences, as a function of increasing spatial frequency, and this phenomenon is directly correlated with saccadic reaction times. Such “coarse-to-fine” rank ordering of SC visual response latencies as a function of spatial frequency is much weaker in V1, suggesting a dissociation of V1 responses from saccade timing. Consistent with this, when we next explored trial-by-trial correlations of individual neurons’ visual response strengths and visual response latencies with saccadic reaction times, we found that most SC neurons exhibited, on a trial-by-trial basis, stronger and earlier visual responses for faster saccadic reaction times. Moreover, these correlations were substantially higher for visual-motor neurons in the intermediate and deep layers than for more superficial visual-only neurons. No such correlations existed systematically in V1. Thus, visual responses in SC and V1 serve fundamentally different roles in active vision: V1 jumpstarts sensing and image analysis, but SC jumpstarts moving. I will finish by demonstrating, using V1 reversible inactivation, that, despite reformatting of signals from V1 to the brainstem, V1 is still a necessary gateway for visually-driven oculomotor responses to occur, even for the most reflexive of eye movement phenomena. This is a fundamental difference from rodent studies demonstrating clear V1-independent processing in afferent visual pathways bypassing the geniculostriate one, and it demonstrates the importance of multi-species comparisons in the study of oculomotor control.
“Open Raman Microscopy (ORM): A modular Raman spectroscopy setup with an open-source controller”
Raman spectroscopy is a powerful technique for identifying chemical species by probing their vibrational energy levels, offering exceptional specificity with a relatively simple setup involving a laser source, spectrometer, and microscope/probe. However, the high cost of Raman systems lacking modularity often limits exploratory research hindering broader adoption. To address the need for an affordable, modular microscopy platform for multimodal imaging, we present a customizable confocal Raman spectroscopy setup alongside an open-source acquisition software, ORM (Open Raman Microscopy) Controller, developed in Python. This solution bridges the gap between expensive commercial systems and complex, custom-built setups used by specialist research groups. In this presentation, we will cover the components of the setup, the design rationale, assembly methods, limitations, and its modular potential for expanding functionality. Additionally, we will demonstrate ORM’s capabilities for instrument control, 2D and 3D Raman mapping, region-of-interest selection, and its adaptability to various instrument configurations. We will conclude by showcasing practical applications of this setup across different research fields.
Brain circuits for spatial navigation
In this webinar on spatial navigation circuits, three researchers—Ann Hermundstad, Ila Fiete, and Barbara Webb—discussed how diverse species solve navigation problems using specialized yet evolutionarily conserved brain structures. Hermundstad illustrated the fruit fly’s central complex, focusing on how hardwired circuit motifs (e.g., sinusoidal steering curves) enable rapid, flexible learning of goal-directed navigation. This framework combines internal heading representations with modifiable goal signals, leveraging activity-dependent plasticity to adapt to new environments. Fiete explored the mammalian head-direction system, demonstrating how population recordings reveal a one-dimensional ring attractor underlying continuous integration of angular velocity. She showed that key theoretical predictions—low-dimensional manifold structure, isometry, uniform stability—are experimentally validated, underscoring parallels to insect circuits. Finally, Webb described honeybee navigation, featuring path integration, vector memories, route optimization, and the famous waggle dance. She proposed that allocentric velocity signals and vector manipulation within the central complex can encode and transmit distances and directions, enabling both sophisticated foraging and inter-bee communication via dance-based cues.
The multi-phase plasticity supporting winner effect
Aggression is an innate behavior across animal species. It is essential for competing for food, defending territory, securing mates, and protecting families and oneself. Since initiating an attack requires no explicit learning, the neural circuit underlying aggression is believed to be genetically and developmentally hardwired. Despite being innate, aggression is highly plastic. It is influenced by a wide variety of experiences, particularly winning and losing previous encounters. Numerous studies have shown that winning leads to an increased tendency to fight while losing leads to flight in future encounters. In the talk, I will present our recent findings regarding the neural mechanisms underlying the behavioral changes caused by winning.
Modeling human brain development and disease: the role of primary cilia
Neurodevelopmental disorders (NDDs) impose a global burden, affecting an increasing number of individuals. While some causative genes have been identified, understanding the human-specific mechanisms involved in these disorders remains limited. Traditional gene-driven approaches for modeling brain diseases have failed to capture the diverse and convergent mechanisms at play. Centrosomes and cilia act as intermediaries between environmental and intrinsic signals, regulating cellular behavior. Mutations or dosage variations disrupting their function have been linked to brain formation deficits, highlighting their importance, yet their precise contributions remain largely unknown. Hence, we aim to investigate whether the centrosome/cilia axis is crucial for brain development and serves as a hub for human-specific mechanisms disrupted in NDDs. Towards this direction, we first demonstrated species-specific and cell-type-specific differences in the cilia-genes expression during mouse and human corticogenesis. Then, to dissect their role, we provoked their ectopic overexpression or silencing in the developing mouse cortex or in human brain organoids. Our findings suggest that cilia genes manipulation alters both the numbers and the position of NPCs and neurons in the developing cortex. Interestingly, primary cilium morphology is disrupted, as we find changes in their length, orientation and number that lead to disruption of the apical belt and altered delamination profiles during development. Our results give insight into the role of primary cilia in human cortical development and address fundamental questions regarding the diversity and convergence of gene function in development and disease manifestation. It has the potential to uncover novel pharmacological targets, facilitate personalized medicine, and improve the lives of individuals affected by NDDs through targeted cilia-based therapies.
Cellular and genetic mechanisms of cerebral cortex folding
One of the most prominent features of the human brain is the fabulous size of the cerebral cortex and its intricate folding, both of which emerge during development. Over the last few years, work from my lab has shown that specific cellular and genetic mechanisms play central roles in cortex folding, particularly linked to neural stem and progenitor cells. Key mechanisms include high rates of neurogenesis, high abundance of basal Radial Glia Cells (bRGCs), and neuron migration, all of which are intertwined during development. We have also shown that primary cortical folds follow highly stereotyped patterns, defined by a spatial-temporal protomap of gene expression within germinal layers of the developing cortex. I will present recent findings from my laboratory revealing novel cellular and genetic mechanisms that regulate cortex expansion and folding. We have uncovered the contribution of epigenetic regulation to the establishment of the cortex folding protomap, modulating the expression levels of key transcription factors that control progenitor cell proliferation and cortex folding. At the single cell level, we have identified an unprecedented diversity of cortical progenitor cell classes in the ferret and human embryonic cortex. These are differentially enriched in gyrus versus sulcus regions and establish parallel cell lineages, not observed in mouse. Our findings show that genetic and epigenetic mechanisms in gyrencephalic species diversify cortical progenitor cell types and implement parallel cell linages, driving the expansion of neurogenesis and patterning cerebral cortex folds.
Neural Mechanisms of Subsecond Temporal Encoding in Primary Visual Cortex
Subsecond timing underlies nearly all sensory and motor activities across species and is critical to survival. While subsecond temporal information has been found across cortical and subcortical regions, it is unclear if it is generated locally and intrinsically or if it is a read out of a centralized clock-like mechanism. Indeed, mechanisms of subsecond timing at the circuit level are largely obscure. Primary sensory areas are well-suited to address these question as they have early access to sensory information and provide minimal processing to it: if temporal information is found in these regions, it is likely to be generated intrinsically and locally. We test this hypothesis by training mice to perform an audio-visual temporal pattern sensory discrimination task as we use 2-photon calcium imaging, a technique capable of recording population level activity at single cell resolution, to record activity in primary visual cortex (V1). We have found significant changes in network dynamics through mice’s learning of the task from naive to middle to expert levels. Changes in network dynamics and behavioral performance are well accounted for by an intrinsic model of timing in which the trajectory of q network through high dimensional state space represents temporal sensory information. Conversely, while we found evidence of other temporal encoding models, such as oscillatory activity, we did not find that they accounted for increased performance but were in fact correlated with the intrinsic model itself. These results provide insight into how subsecond temporal information is encoded mechanistically at the circuit level.
Great ape interaction: Ladyginian but not Gricean
Non-human great apes inform one another in ways that can seem very humanlike. Especially in the gestural domain, their behavior exhibits many similarities with human communication, meeting widely used empirical criteria for intentionality. At the same time, there remain some manifest differences. How to account for these similarities and differences in a unified way remains a major challenge. This presentation will summarise the arguments developed in a recent paper with Christophe Heintz. We make a key distinction between the expression of intentions (Ladyginian) and the expression of specifically informative intentions (Gricean), and we situate this distinction within a ‘special case of’ framework for classifying different modes of attention manipulation. The paper also argues that the attested tendencies of great ape interaction—for instance, to be dyadic rather than triadic, to be about the here-and-now rather than ‘displaced’—are products of its Ladyginian but not Gricean character. I will reinterpret video footage of great ape gesture as Ladyginian but not Gricean, and distinguish several varieties of meaning that are continuous with one another. We conclude that the evolutionary origins of linguistic meaning lie in gradual changes in not communication systems as such, but rather in social cognition, and specifically in what modes of attention manipulation are enabled by a species’ cognitive phenotype: first Ladyginian and in turn Gricean. The second of these shifts rendered humans, and only humans, ‘language ready’.
Mechanisms of visual diversity: from evolutionary processes to instantaneous responses
Sex hormone regulation of neural gene expression
Gonadal steroid hormones are the principal drivers of sex-variable biology in vertebrates. In the brain, estrogen (17β-estradiol) establishes neural sex differences in many species and modulates mood, behavior, and energy balance in adulthood. To understand the diverse effects of estradiol on the brain, we profiled the genomic binding of estrogen receptor alpha (ERα), providing the first picture of the neural actions of any gonadal hormone receptor. To relate ERα target genes to brain sex differences we assessed gene expression and chromatin accessibility in the posterior bed nucleus of the stria terminalis (BNSTp), a sexually dimorphic node in limbic circuitry that underlies sex-differential social behaviors such as aggression and parenting. In adult animals we observe that levels of ERα are predictive of the extent of sex-variable gene expression, and that these sex differences are a dynamic readout of acute hormonal state. In neonates we find that transient ERα recruitment at birth leads to persistent chromatin opening and male-biased gene expression, demonstrating a true epigenetic mechanism for brain sexual differentiation. Collectively, our findings demonstrate that sex differences in gene expression in the brain are a readout of state-dependent hormone receptor actions, rather than other factors such as sex chromosomes. We anticipate that the ERα targets we have found will contribute to established sex differences in the incidence and etiology of neurological and psychiatric disorders.
Human and Zebrafish retinal circuits: similarities in day and night
Estimating repetitive spatiotemporal patterns from resting-state brain activity data
Repetitive spatiotemporal patterns in resting-state brain activities have been widely observed in various species and regions, such as rat and cat visual cortices. Since they resemble the preceding brain activities during tasks, they are assumed to reflect past experiences embedded in neuronal circuits. Moreover, spatiotemporal patterns involving whole-brain activities may also reflect a process that integrates information distributed over the entire brain, such as motor and visual information. Therefore, revealing such patterns may elucidate how the information is integrated to generate consciousness. In this talk, I will introduce our proposed method to estimate repetitive spatiotemporal patterns from resting-state brain activity data and show the spatiotemporal patterns estimated from human resting-state magnetoencephalography (MEG) and electroencephalography (EEG) data. Our analyses suggest that the patterns involved whole-brain propagating activities that reflected a process to integrate the information distributed over frequencies and networks. I will also introduce our current attempt to reveal signal flows and their roles in the spatiotemporal patterns using a big dataset. - Takeda et al., Estimating repetitive spatiotemporal patterns from resting-state brain activity data. NeuroImage (2016); 133:251-65. - Takeda et al., Whole-brain propagating patterns in human resting-state brain activities. NeuroImage (2021); 245:118711.
A carnivorous mushroom paralyzes and kills nematodes via a volatile ketone
How a fungus overcomes the defence of C. elegans
Cognition in the Wild
What do nonhuman primates know about each other and their social environment, how do they allocate their attention, and what are the functional consequences of social decisions in natural settings? Addressing these questions is crucial to hone in on the co-evolution of cognition, social behaviour and communication, and ultimately the evolution of intelligence in the primate order. I will present results from field experimental and observational studies on free-ranging baboons, which tap into the cognitive abilities of these animals. Baboons are particularly valuable in this context as different species reveal substantial variation in social organization and degree of despotism. Field experiments revealed considerable variation in the allocation of social attention: while the competitive chacma baboons were highly sensitive to deviations from the social order, the highly tolerant Guinea baboons revealed a confirmation bias. This bias may be a result of the high gregariousness of the species, which puts a premium on ignoring social noise. Variation in despotism clearly impacted the use of signals to regulate social interactions. For instance, male-male interactions in chacma baboons mostly comprised dominance displays, while Guinea baboon males evolved elaborate greeting rituals that serve to confirm group membership and test social bonds. Strikingly, the structure of signal repertoires does not differ substantially between different baboon species. In conclusion, the motivational disposition to engage in affiliation or aggressiveness appears to be more malleable during evolution than structural elements of the behavioral repertoire; this insight is crucial for understanding the dynamics of social evolution.
Central place foraging: how insects anchor spatial information
Many insect species maintain a nest around which their foraging behaviour is centered, and can use path integration to maintain an accurate estimate of their distance and direction (a vector) to their nest. Some species, such as bees and ants, can also store the vector information for multiple salient locations in the world, such as food sources, in a common coordinate system. They can also use remembered views of the terrain around salient locations or along travelled routes to guide return. Recent modelling of these abilities shows convergence on a small set of algorithms and assumptions that appear sufficient to account for a wide range of behavioural data, and which can be mapped to specific insect brain circuits. Notably, this does not include any significant topological knowledge: the insect does not need to recover the information (implicit in their vector memory) about the relationships between salient places; nor to maintain any connectedness or ordering information between view memories; nor to form any associations between views and vectors. However, there remains some experimental evidence not fully explained by these algorithms that may point towards the existence of a more complex or integrated mental map in insects.
Orientation selectivity in rodent V1: theory vs experiments
Neurons in the primary visual cortex (V1) of rodents are selective to the orientation of the stimulus, as in other mammals such as cats and monkeys. However, in contrast with those species, their neurons display a very different type of spatial organization. Instead of orientation maps they are organized in a “salt and pepper” pattern, where adjacent neurons have completely different preferred orientations. This structure has motivated both experimental and theoretical research with the objective of determining which aspects of the connectivity patterns and intrinsic neuronal responses can explain the observed behavior. These analysis have to take into account also that the neurons of the thalamus that send their outputs to the cortex have more complex responses in rodents than in higher mammals, displaying, for instance, a significant degree of orientation selectivity. In this talk we present work showing that a random feed-forward connectivity pattern, in which the probability of having a connection between a cortical neuron and a thalamic neuron depends only on the relative distance between them is enough explain several aspects of the complex phenomenology found in these systems. Moreover, this approach allows us to evaluate analytically the statistical structure of the thalamic input on the cortex. We find that V1 neurons are orientation selective but the preferred orientation of the stimulus depends on the spatial frequency of the stimulus. We disentangle the effect of the non circular thalamic receptive fields, finding that they control the selectivity of the time-averaged thalamic input, but not the selectivity of the time locked component. We also compare with experiments that use reverse correlation techniques, showing that ON and OFF components of the aggregate thalamic input are spatially segregated in the cortex.
LifePerceives
Life Perceives is a symposium bringing together scientists and artists for an open exploration of how “perception” can be understood as a phenomenon that does not only belong to humans, or even the so-called “higher organisms”, but exists across the entire spectrum of life in a myriad of forms. The symposium invites leading practitioners from the arts and sciences to present unique insights through short talks, open discussions, and artistic interventions that bring us slightly closer to the life worlds of plants and fungi, microbial communities and immune systems, cuttlefish and crows. What do we mean when we talk about perception in other species? Do other organisms have an experience of the world? Or does our human-centred perspective make understanding other forms of life on their own terms an impossible dream? Whatever your answers to these questions may be, we hope to unsettle them, and leave you more curious than when you arrived.
Vision for Predation
Roots of Analogy
Can nonhuman animals perceive the relation-between-relations? This intriguing question has been studied over the last 40 years; nonetheless, the extent to which nonhuman species can do so remains controversial. Here, I review empirical evidence suggesting that pigeons, parrots, crows, and baboons join humans in reliably acquiring and transferring relational matching-to-sample (RMTS). Many theorists consider that RMTS captures the essence of analogy, because basic to analogy is appreciating the ‘relation between relations.’ Factors affecting RMTS performance include: prior training experience, the entropy of the sample stimulus, and whether the items that serve as sample stimuli can also serve as choice stimuli.
Adaptation via innovation in the animal kingdom
Over the course of evolution, the human race has achieved a number of remarkable innovations, that have enabled us to adapt to and benefit from the environment ever more effectively. The ongoing environmental threats and health disasters of our world have now made it crucial to understand the cognitive mechanisms behind innovative behaviours. In my talk, I will present two research projects with examples of innovation-based behavioural adaptation from the taxonomic kingdom of animals, serving as a comparative psychological model for mapping the evolution of innovation. The first project focuses on the challenge of overcoming physical disability. In this study, we investigated an injured kea (Nestor notabilis) that exhibits an efficient, intentional, and innovative tool-use behaviour to compensate his disability, showing evidence for innovation-based adaptation to a physical disability in a non-human species. The second project focuses on the evolution of fire use from a cognitive perspective. Fire has been one of the most dominant ecological forces in human evolution; however, it is still unknown what capabilities and environmental factors could have led to the emergence of fire use. In the core study of this project, we investigated a captive population of Japanese macaques (Macaca fuscata) that has been regularly exposed to campfires during the cold winter months for over 60 years. Our results suggest that macaques are able to take advantage of the positive effects of fire while avoiding the dangers of flames and hot ashes, and exhibit calm behaviour around the bonfire. In addition, I will present a research proposal targeting the foraging behaviour of predatory birds in parts of Australia frequently affected by bushfires. Anecdotal reports suggest that some birds use burning sticks to spread the flames, a behaviour that has not been scientifically observed and evaluated. In summary, the two projects explore innovative behaviours along three different species groups, three different habitats, and three different ecological drivers, providing insights into the cognitive and behavioural mechanisms of adaptation through innovation.
Neural circuits for vector processing in the insect brain
Several species of insects have been observed to perform accurate path integration, constantly updating a vector memory of their location relative to a starting position, which they can use to take a direct return path. Foraging insects such as bees and ants are also able to store and recall the vectors to return to food locations, and to take novel shortcuts between these locations. Other insects, such as dung beetles, are observed to integrate multimodal directional cues in a manner well described by vector addition. All these processes appear to be functions of the Central Complex, a highly conserved and strongly structured circuit in the insect brain. Modelling this circuit, at the single neuron level, suggests it has general capabilities for vector encoding, vector memory, vector addition and vector rotation that can support a wide range of directed and navigational behaviours.
Exploring emotion in the expression of ape gesture
Language appears to be the most complex system of animal communication described to date. However, its precursors were present in the communication of our evolutionary ancestors and are likely shared by our modern ape cousins. All great apes, including humans, employ a rich repertoire of vocalizations, facial expressions, and gestures. Great ape gestural repertoires are particularly elaborate, with ape species employing over 80 different gesture types intentionally: that is towards a recipient with a specific goal in mind. Intentional usage allows us to ask not only what information is encoded in ape gestures, but what do apes mean when they use them. I will discuss recent research on ape gesture, on how we approach the question of decoding meaning, and how with new methods we are starting to integrate long overlooked aspects of ape gesture such as group and individual variation, and expression and emotion into our study of these signals.
Development and evolution of neuronal connectivity
In most animal species including humans, commissural axons connect neurons on the left and right side of the nervous system. In humans, abnormal axon midline crossing during development causes a whole range of neurological disorders ranging from congenital mirror movements, horizontal gaze palsy, scoliosis or binocular vision deficits. The mechanisms which guide axons across the CNS midline were thought to be evolutionary conserved but our recent results suggesting that they differ across vertebrates. I will discuss the evolution of visual projection laterality during vertebrate evolution. In most vertebrates, camera-style eyes contain retinal ganglion cell (RGC) neurons projecting to visual centers on both sides of the brain. However, in fish, RGCs are thought to only innervate the contralateral side. Using 3D imaging and tissue clearing we found that bilateral visual projections exist in non-teleost fishes. We also found that the developmental program specifying visual system laterality differs between fishes and mammals. We are currently using various strategies to discover genes controlling the development of visual projections. I will also present ongoing work using 3D imaging techniques to study the development of the visual system in human embryo.
Redox and mitochondrial dysregulation in epilepsy
Epileptic seizures render the brain uniquely dependent on energy producing pathways. Studies in our laboratory have been focused on the role of redox processes and mitochondria in the context of abnormal neuronal excitability associated with epilepsy. We have shown that that status epilepticus (SE) alters mitochondrial and cellular redox status, energetics and function and conversely, that reactive oxygen species and resultant dysfunction can lead to chronic epilepsy. Oxidative stress and neuroinflammatory pathways have considerable crosstalk and targeting redox processes has recently been shown to control neuroinflammation and excitability. Understanding the role of metabolic and redox processes can enable the development of novel therapeutics to control epilepsy and/or its comorbidities.
Epigenome regulation in neocortex expansion and generation of neuronal subtypes
Evolutionarily, the expansion of the human neocortex accounts for many of the unique cognitive abilities of humans. This expansion appears to reflect the increased proliferative potential of basal progenitors (BPs) in mammalian evolution. Further cortical progenitors generate both glutamatergic excitatory neurons (ENs) and GABAergic inhibitory interneurons (INs) in human cortex, whereas they produce exclusively ENs in rodents. The increased proliferative capacity and neuronal subtype generation of cortical progenitors in mammalian evolution may have evolved through epigenetic alterations. However, whether or how the epigenome in cortical progenitors differs between humans and other species is unknown. Here, we report that histone H3 acetylation is a key epigenetic regulation in BP profiling of sorted BPs, we show that H3K9 acetylation is low in murine BPs and high in amplification, neuronal subtype generation and cortical expansion. Through epigenetic profiling of sorted BPs, we show that H3K9 acetylation is low in murine BPs and high in human BPs. Elevated H3K9ac preferentially increases BP proliferation, increasing the size and folding of the normally smooth mouse neocortex. Furthermore, we found that the elevated H3 acetylation activates expression of IN genes in in developing mouse cortex and promote proliferation of IN progenitor-like cells in cortex of Pax6 mutant mouse models. Mechanistically, H3K9ac drives the BP amplification and proliferation of these IN progenitor-like cells by increasing expression of the evolutionarily regulated gene, TRNP1. Our findings demonstrate a previously unknown mechanism that controls neocortex expansion and generation of neuronal subtypes. Keywords: Cortical development, neurogenesis, basal progenitors, cortical size, gyrification, excitatory neuron, inhibitory interneuron, epigenetic profiling, epigenetic regulation, H3 acetylation, H3K9ac, TRNP1, PAX6
The role of top-down mechanisms in gaze perception
Humans, as a social species, have an increased ability to detect and perceive visual elements involved in social exchanges, such as faces and eyes. The gaze, in particular, conveys information crucial for social interactions and social cognition. Researchers have hypothesized that in order to engage in dynamic face-to-face communication in real time, our brains must quickly and automatically process the direction of another person's gaze. There is evidence that direct gaze improves face encoding and attention capture and that direct gaze is perceived and processed more quickly than averted gaze. These results are summarized as the "direct gaze effect". However, in the recent literature, there is evidence to suggest that the mode of visual information processing modulates the direct gaze effect. In this presentation, I argue that top-down processing, and specifically the relevance of eye features to the task, promotes the early preferential processing of direct versus indirect gaze. On the basis of several recent evidences, I propose that low task relevance of eye features will prevent differences in eye direction processing between gaze directions because its encoding will be superficial. Differential processing of direct and indirect gaze will only occur when the eyes are relevant to the task. To assess the implication of task relevance on the temporality of cognitive processing, we will measure event-related potentials (ERPs) in response to facial stimuli. In this project, instead of typical ERP markers such as P1, N170 or P300, we will measure lateralized ERPs (lERPS) such as lateralized N170 and N2pc, which are markers of early face encoding and attentional deployment respectively. I hypothesize that the relevance of the eye feature task is crucial in the direct gaze effect and propose to revisit previous studies, which had questioned the existence of the direct gaze effect. This claim will be illustrate with different past studies and recent preliminary data of my lab. Overall, I propose a systematic evaluation of the role of top-down processing in early direct gaze perception in order to understand the impact of context on gaze perception and, at a larger scope, on social cognition.
On the contributions of retinal direction selectivity to cortical motion processing in mice
Cells preferentially responding to visual motion in a particular direction are said to be direction-selective, and these were first identified in the primary visual cortex. Since then, direction-selective responses have been observed in the retina of several species, including mice, indicating motion analysis begins at the earliest stage of the visual hierarchy. Yet little is known about how retinal direction selectivity contributes to motion processing in the visual cortex. In this talk, I will present our experimental efforts to narrow this gap in our knowledge. To this end, we used genetic approaches to disrupt direction selectivity in the retina and mapped neuronal responses to visual motion in the visual cortex of mice using intrinsic signal optical imaging and two-photon calcium imaging. In essence, our work demonstrates that direction selectivity computed at the level of the retina causally serves to establish specialized motion responses in distinct areas of the mouse visual cortex. This finding thus compels us to revisit our notions of how the brain builds complex visual representations and underscores the importance of the processing performed in the periphery of sensory systems.
Multimodal tracking of motor activity, sleep and mood
This talk will (1) describe patterns and correlates of objectively assessed motor activity (2) present findings on the inter-relationships among motor activity, sleep and circadian rhythms and mood disorders; (3) describe potential of cross species studies of motor activity and related systems to inform human chronobiology research
Reprogramming the nociceptive circuit topology reshapes sexual behavior in C. elegans
In sexually reproducing species, males and females respond to environmental sensory cues and transform the input into sexually dimorphic traits. Yet, how sexually dimorphic behavior is encoded in the nervous system is poorly understood. We characterize the sexually dimorphic nociceptive behavior in C. elegans – hermaphrodites present a lower pain threshold than males in response to aversive stimuli, and study the underlying neuronal circuits, which are composed of the same neurons that are wired differently. By imaging receptor expression, calcium responses and glutamate secretion, we show that sensory transduction is similar in the two sexes, and therefore explore how downstream network topology shapes dimorphic behavior. We generated a computational model that replicates the observed dimorphic behavior, and used this model to predict simple network rewirings that would switch the behavior between the sexes. We then showed experimentally, using genetic manipulations, artificial gap junctions, automated tracking and optogenetics, that these subtle changes to male connectivity result in hermaphrodite-like aversive behavior in-vivo, while hermaphrodite behavior was more robust to perturbations. Strikingly, when presented with aversive cues, rewired males were compromised in finding mating partners, suggesting that the network topology that enables efficient avoidance of noxious cues would have a reproductive "cost". To summarize, we present a deconstruction of a sex-shared neural circuit that affects sexual behavior, and how to reprogram it. More broadly, our results are an example of how common neuronal circuits changed their function during evolution by subtle topological rewirings to account for different environmental and sexual needs.
The evolution of computation in the brain: Insights from studying the retina
The retina is probably the most accessible part of the vertebrate central nervous system. Its computational logic can be interrogated in a dish, from patterns of lights as the natural input, to spike trains on the optic nerve as the natural output. Consequently, retinal circuits include some of the best understood computational networks in neuroscience. The retina is also ancient, and central to the emergence of neurally complex life on our planet. Alongside new locomotor strategies, the parallel evolution of image forming vision in vertebrate and invertebrate lineages is thought to have driven speciation during the Cambrian. This early investment in sophisticated vision is evident in the fossil record and from comparing the retina’s structural make up in extant species. Animals as diverse as eagles and lampreys share the same retinal make up of five classes of neurons, arranged into three nuclear layers flanking two synaptic layers. Some retina neuron types can be linked across the entire vertebrate tree of life. And yet, the functions that homologous neurons serve in different species, and the circuits that they innervate to do so, are often distinct to acknowledge the vast differences in species-specific visuo-behavioural demands. In the lab, we aim to leverage the vertebrate retina as a discovery platform for understanding the evolution of computation in the nervous system. Working on zebrafish alongside birds, frogs and sharks, we ask: How do synapses, neurons and networks enable ‘function’, and how can they rearrange to meet new sensory and behavioural demands on evolutionary timescales?
Exploring mechanisms of human brain expansion in cerebral organoids
The human brain sets us apart as a species, with its size being one of its most striking features. Brain size is largely determined during development as vast numbers of neurons and supportive glia are generated. In an effort to better understand the events that determine the human brain’s cellular makeup, and its size, we use a human model system in a dish, called cerebral organoids. These 3D tissues are generated from pluripotent stem cells through neural differentiation and a supportive 3D microenvironment to generate organoids with the same tissue architecture as the early human fetal brain. Such organoids are allowing us to tackle questions previously impossible with more traditional approaches. Indeed, our recent findings provide insight into regulation of brain size and neuron number across ape species, identifying key stages of early neural stem cell expansion that set up a larger starting cell number to enable the production of increased numbers of neurons. We are also investigating the role of extrinsic regulators in determining numbers and types of neurons produced in the human cerebral cortex. Overall, our findings are pointing to key, human-specific aspects of brain development and function, that have important implications for neurological disease.
The evolution and development of visual complexity: insights from stomatopod visual anatomy, physiology, behavior, and molecules
Bioluminescence, which is rare on land, is extremely common in the deep sea, being found in 80% of the animals living between 200 and 1000 m. These animals rely on bioluminescence for communication, feeding, and/or defense, so the generation and detection of light is essential to their survival. Our present knowledge of this phenomenon has been limited due to the difficulty in bringing up live deep-sea animals to the surface, and the lack of proper techniques needed to study this complex system. However, new genomic techniques are now available, and a team with extensive experience in deep-sea biology, vision, and genomics has been assembled to lead this project. This project is aimed to study three questions 1) What are the evolutionary patterns of different types of bioluminescence in deep-sea shrimp? 2) How are deep-sea organisms’ eyes adapted to detect bioluminescence? 3) Can bioluminescent organs (called photophores) detect light in addition to emitting light? Findings from this study will provide valuable insight into a complex system vital to communication, defense, camouflage, and species recognition. This study will bring monumental contributions to the fields of deep sea and evolutionary biology, and immediately improve our understanding of bioluminescence and light detection in the marine environment. In addition to scientific advancement, this project will reach K-college aged students through the development and dissemination of educational tools, a series of molecular and organismal-based workshops, museum exhibits, public seminars, and biodiversity initiatives.
The Synaptome Architecture of the Brain: Lifespan, disease, evolution and behavior
The overall aim of my research is to understand how the organisation of the synapse, with particular reference to the postsynaptic proteome (PSP) of excitatory synapses in the brain, informs the fundamental mechanisms of learning, memory and behaviour and how these mechanisms go awry in neurological dysfunction. The PSP indeed bears a remarkable burden of disease, with components being disrupted in disorders (synaptopathies) including schizophrenia, depression, autism and intellectual disability. Our work has been fundamental in revealing and then characterising the unprecedented complexity (>1000 highly conserved proteins) of the PSP in terms of the subsynaptic architecture of postsynaptic proteins such as PSD95 and how these proteins assemble into complexes and supercomplexes in different neurons and regions of the brain. Characterising the PSPs in multiple species, including human and mouse, has revealed differences in key sets of functionally important proteins, correlates with brain imaging and connectome data, and a differential distribution of disease-relevant proteins and pathways. Such studies have also provided important insight into synapse evolution, establishing that vertebrate behavioural complexity is a product of the evolutionary expansion in synapse proteomes that occurred ~500 million years ago. My lab has identified many mutations causing cognitive impairments in mice before they were found to cause human disorders. Our proteomic studies revealed that >130 brain diseases are caused by mutations affecting postsynaptic proteins. We uncovered mechanisms that explain the polygenic basis and age of onset of schizophrenia, with postsynaptic proteins, including PSD95 supercomplexes, carrying much of the polygenic burden. We discovered the “Genetic Lifespan Calendar”, a genomic programme controlling when genes are regulated. We showed that this could explain how schizophrenia susceptibility genes are timed to exert their effects in young adults. The Genes to Cognition programme is the largest genetic study so far undertaken into the synaptic molecular mechanisms underlying behaviour and physiology. We made important conceptual advances that inform how the repertoire of both innate and learned behaviours is built from unique combinations of postsynaptic proteins that either amplify or attenuate the behavioural response. This constitutes a key advance in understanding how the brain decodes information inherent in patterns of nerve impulses, and provides insight into why the PSP has evolved to be so complex, and consequently why the phenotypes of synaptopathies are so diverse. Our most recent work has opened a new phase, and scale, in understanding synapses with the first synaptome maps of the brain. We have developed next-generation methods (SYNMAP) that enable single-synapse resolution molecular mapping across the whole mouse brain and extensive regions of the human brain, revealing the molecular and morphological features of a billion synapses. This has already uncovered unprecedented spatiotemporal synapse diversity organised into an architecture that correlates with the structural and functional connectomes, and shown how mutations that cause cognitive disorders reorganise these synaptome maps; for example, by detecting vulnerable synapse subtypes and synapse loss in Alzheimer’s disease. This innovative synaptome mapping technology has huge potential to help characterise how the brain changes during normal development, including in specific cell types, and with degeneration, facilitating novel pathways to diagnosis and therapy.
Emergence of homochirality in large molecular systems
The question of the origin of homochirality of living matter, or the dominance of one handedness for all molecules of life across the entire biosphere, is a long-standing puzzle in the research on the Origin of Life. In the fifties, Frank proposed a mechanism to explain homochirality based on the properties of a simple autocatalytic network containing only a few chemical species. Following this work, chemists struggled to find experimental realizations of this model, possibly due to a lack of proper methods to identify autocatalysis [1]. In any case, a model based on a few chemical species seems rather limited, because prebiotic earth is likely to have consisted of complex ‘soups’ of chemicals. To include this aspect of the problem, we recently proposed a mechanism based on certain features of large out-of-equilibrium chemical networks [2]. We showed that a phase transition towards an homochiral state is likely to occur as the number of chiral species in the system becomes large or as the amount of free energy injected into the system increases. Through an analysis of large chemical databases, we showed that there is no need for very large molecules for chiral species to dominate over achiral ones; it already happens when molecules contain about 10 heavy atoms. We also analyzed the various conventions used to measure chirality and discussed the relative chiral signs adopted by different groups of molecules [3]. We then proposed a generalization of Frank’s model for large chemical networks, which we characterized using random matrix theory. This analysis includes sparse networks, suggesting that the emergence of homochirality is a robust and generic transition. References: [1] A. Blokhuis, D. Lacoste, and P. Nghe, PNAS (2020), 117, 25230. [2] G. Laurent, D. Lacoste, and P. Gaspard, PNAS (2021) 118 (3) e2012741118. [3] G. Laurent, D. Lacoste, and P. Gaspard, Proc. R. Soc. A 478:20210590 (2022).
Do Capuchin Monkeys, Chimpanzees and Children form Overhypotheses from Minimal Input? A Hierarchical Bayesian Modelling Approach
Abstract concepts are a powerful tool to store information efficiently and to make wide-ranging predictions in new situations based on sparse data. Whereas looking-time studies point towards an early emergence of this ability in human infancy, other paradigms like the relational match to sample task often show a failure to detect abstract concepts like same and different until the late preschool years. Similarly, non-human animals have difficulties solving those tasks and often succeed only after long training regimes. Given the huge influence of small task modifications, there is an ongoing debate about the conclusiveness of these findings for the development and phylogenetic distribution of abstract reasoning abilities. Here, we applied the concept of “overhypotheses” which is well known in the infant and cognitive modeling literature to study the capabilities of 3 to 5-year-old children, chimpanzees, and capuchin monkeys in a unified and more ecologically valid task design. In a series of studies, participants themselves sampled reward items from multiple containers or witnessed the sampling process. Only when they detected the abstract pattern governing the reward distributions within and across containers, they could optimally guide their behavior and maximize the reward outcome in a novel test situation. We compared each species’ performance to the predictions of a probabilistic hierarchical Bayesian model capable of forming overhypotheses at a first and second level of abstraction and adapted to their species-specific reward preferences.
Metabolic spikes: from rogue electrons to Parkinson's
Conventionally, neurons are thought to be cellular units that process synaptic inputs into synaptic spikes. However, it is well known that neurons can also spike spontaneously and display a rich repertoire of firing properties with no apparent functional relevance e.g. in in vitro cortical slice preparations. In this talk, I will propose a hypothesis according to which intrinsic excitability in neurons may be a survival mechanism to minimize toxic byproducts of the cell’s energy metabolism. In neurons, this toxicity can arise when mitochondrial ATP production stalls due to limited ADP. Under these conditions, electrons deviate from the electron transport chain to produce reactive oxygen species, disrupting many cellular processes and challenging cell survival. To mitigate this, neurons may engage in ADP-producing metabolic spikes. I will explore the validity of this hypothesis using computational models that illustrate the implications of synaptic and metabolic spiking, especially in the context of substantia nigra pars compacta dopaminergic neurons and their degeneration in Parkinson's disease.
Synergy of color and motion vision for detecting approaching objects in Drosophila
I am working on color vision in Drosophila, identifying behaviors that involve color vision and understanding the neural circuits supporting them (Longden 2016). I have a long-term interest in understanding how neural computations operate reliably under changing circumstances, be they external changes in the sensory context, or internal changes of state such as hunger and locomotion. On internal state-modulation of sensory processing, I have shown how hunger alters visual motion processing in blowflies (Longden et al. 2014), and identified a role for octopamine in modulating motion vision during locomotion (Longden and Krapp 2009, 2010). On responses to external cues, I have shown how one kind of uncertainty in the motion of the visual scene is resolved by the fly (Saleem, Longden et al. 2012), and I have identified novel cells for processing translation-induced optic flow (Longden et al. 2017). I like working with colleagues who use different model systems, to get at principles of neural operation that might apply in many species (Ding et al. 2016, Dyakova et al. 2015). I like work motivated by computational principles - my background is computational neuroscience, with a PhD on models of memory formation in the hippocampus (Longden and Willshaw, 2007).
Opponent processing in the expanded retinal mosaic of Nymphalid butterflies
In many butterflies, the ancestral trichromatic insect colour vision, based on UV-, blue- and green-sensitive photoreceptors, is extended with red-sensitive cells. Physiological evidence for red receptors has been missing in nymphalid butterflies, although some species can discriminate red hues well. In eight species from genera Archaeoprepona, Argynnis, Charaxes, Danaus, Melitaea, Morpho, Heliconius and Speyeria, we found a novel class of green-sensitive photoreceptors that have hyperpolarizing responses to stimulation with red light. These green-positive, red-negative (G+R–) cells are allocated to positions R1/2, normally occupied by UV and blue-sensitive cells. Spectral sensitivity, polarization sensitivity and temporal dynamics suggest that the red opponent units (R–) are the basal photoreceptors R9, interacting with R1/2 in the same ommatidia via direct inhibitory synapses. We found the G+R– cells exclusively in butterflies with red-shining ommatidia, which contain longitudinal screening pigments. The implementation of the red colour channel with R9 is different from pierid and papilionid butterflies, where cells R5–8 are the red receptors. The nymphalid red-green opponent channel and the potential for tetrachromacy seem to have been switched on several times during evolution, balancing between the cost of neural processing and the value of extended colour information.
Neural representations of space in the hippocampus of a food-caching bird
Spatial memory in vertebrates requires brain regions homologous to the mammalian hippocampus. Between vertebrate clades, however, these regions are anatomically distinct and appear to produce different spatial patterns of neural activity. We asked whether hippocampal activity is fundamentally different even between distant vertebrates that share a strong dependence on spatial memory. We studied tufted titmice – food-caching birds capable of remembering many concealed food locations. We found mammalian-like neural activity in the titmouse hippocampus, including sharp-wave ripples and anatomically organized place cells. In a non-food-caching bird species, spatial firing was less informative and was exhibited by fewer neurons. These findings suggest that hippocampal circuit mechanisms are similar between birds and mammals, but that the resulting patterns of activity may vary quantitatively with species-specific ethological needs.
How do the mammalian complex brains develop?: finding common and species-specific mechanisms
What transcriptomics tells us about retinal development, disease and evolution
Classification of neurons, long viewed as a fairly boring enterprise, has emerged as a major bottleneck in analysis of neural circuits. High throughput single cell RNA-seq has provided a new way to improve the situation. We initially applied this method to mouse retina, showing that its five neuronal classes (photoreceptors, three groups of interneurons, and retinal ganglion cells) can be divided into 130 discrete types. We then applied the method to other species including human, macaque, zebrafish and chick. With the atlases in hand, we are now using them to address questions about how retinal cell types diversify, how they differ in their responses to injury and disease, and the extent to which cell classes and types are conserved among vertebrates.
Adapt or Die: Transgenerational Inheritance of Pathogen Avoidance (or, How getting food poisoning might save your species)
Caenorhabditis elegans must distinguish pathogens from nutritious food sources among the many bacteria to which it is exposed in its environment1. Here we show that a single exposure to purified small RNAs isolated from pathogenic Pseudomonas aeruginosa (PA14) is sufficient to induce pathogen avoidance in the treated worms and in four subsequent generations of progeny. The RNA interference (RNAi) and PIWI-interacting RNA (piRNA) pathways, the germline and the ASI neuron are all required for avoidance behaviour induced by bacterial small RNAs, and for the transgenerational inheritance of this behaviour. A single P. aeruginosa non-coding RNA, P11, is both necessary and sufficient to convey learned avoidance of PA14, and its C. elegans target, maco-1, is required for avoidance. Our results suggest that this non-coding-RNA-dependent mechanism evolved to survey the microbial environment of the worm, use this information to make appropriate behavioural decisions and pass this information on to its progeny.
In vitro bioelectronic models of the gut-brain axis
The human gut microbiome has emerged as a key player in the bidirectional communication of the gut-brain axis, affecting various aspects of homeostasis and pathophysiology. Until recently, the majority of studies that seek to explore the mechanisms underlying the microbiome-gut-brain axis cross-talk relied almost exclusively on animal models, and particularly gnotobiotic mice. Despite the great progress made with these models, various limitations, including ethical considerations and interspecies differences that limit the translatability of data to human systems, pushed researchers to seek for alternatives. Over the past decades, the field of in vitro modelling of tissues has experienced tremendous growth, thanks to advances in 3D cell biology, materials, science and bioengineering, pushing further the borders of our ability to more faithfully emulate the in vivo situation. Organ-on-chip technology and bioengineered tissues have emerged as highly promising alternatives to animal models for a wide range of applications. In this talk I’ll discuss our progress towards generating a complete platform of the human microbiota-gut-brain axis with integrated monitoring and sensing capabilities. Bringing together principles of materials science, tissue engineering, 3D cell biology and bioelectronics, we are building advanced models of the GI and the BBB /NVU, with real-time and label-free monitoring units adapted in the model architecture, towards a robust and more physiologically relevant human in vitro model, aiming to i) elucidate the role of microbiota in the gut-brain axis communication, ii) to study how diet and impaired microbiota profiles affect various (patho-)physiologies, and iii) to test personalised medicine approaches for disease modelling and drug testing.
Predator-prey interactions: the avian visual sensory perspective
My research interests are centered on animal ecology, and more specifically include the following areas: visual ecology, behavioral ecology, and conservation biology, as well as the interactions between them. My research is question-driven. I answer my questions in a comprehensive manner, using a combination of empirical, theoretical, and comparative approaches. My model species are usually birds, but I have also worked with fish, mammals, amphibians, and insects. I was fortunate to enrich my education by attending Universities in different parts of the world. I did my undergraduate, specialized in ecology and biodiversity, at the "Universidad Nacional de Cordoba", Argentina. My Ph.D. was in animal ecology and conservation biology at the "Universidad Complutense de Madrid", Spain. My two post-docs were focused on behavioral ecology; the first one at University of Oxford (United Kingdom), and the second one at University of Minnesota (USA). I was an Assistant Professor at California State University Long Beach for almost six years. I am now a Full Professor of Biological Sciences at Purdue University.
Beyond the binding problem: From basic affordances to symbolic thought
Human cognitive abilities seem qualitatively different from the cognitive abilities of other primates, a difference Penn, Holyoak, and Povinelli (2008) attribute to role-based relational reasoning—inferences and generalizations based on the relational roles to which objects (and other relations) are bound, rather than just the features of the objects themselves. Role-based relational reasoning depends on the ability to dynamically bind arguments to relational roles. But dynamic binding cannot be sufficient for relational thinking: Some non-human animals solve the dynamic binding problem, at least in some domains; and many non-human species generalize affordances to completely novel objects and scenes, a kind of universal generalization that likely depends on dynamic binding. If they can solve the dynamic binding problem, then why can they not reason about relations? What are they missing? I will present simulations with the LISA model of analogical reasoning (Hummel & Holyoak, 1997, 2003) suggesting that the missing pieces are multi-role integration (the capacity to combine multiple role bindings into complete relations) and structure mapping (the capacity to map different systems of role bindings onto one another). When LISA is deprived of either of these capacities, it can still generalize affordances universally, but it cannot reason symbolically; granted both abilities, LISA enjoys the full power of relational (symbolic) thought. I speculate that one reason it may have taken relational reasoning so long to evolve is that it required evolution to solve both problems simultaneously, since neither multi-role integration nor structure mapping appears to confer any adaptive advantage over simple role binding on its own.
Themes and Variations: Circuit mechanisms of behavioral evolution
Animals exhibit extraordinary variation in their behavior, yet little is known about the neural mechanisms that generate this diversity. My lab has been taking advantage of the rapid diversification of male courtship behaviors in Drosophila to glean insight into how evolution shapes the nervous system to generate species-specific behaviors. By translating neurogenetic tools from D. melanogaster to closely related Drosophila species, we have begun to directly compare the homologous neural circuits and pinpoint sites of adaptive change. Across species, P1 neurons serve as a conserved node in regulating male courtship: these neurons are selectively activated by the sensory cues indicative of an appropriate mate and their activation triggers enduring courtship displays. We have been examining how different sensory pathways converge onto P1 neurons to regulate a male’s state of arousal, honing his pursuit of a prospective partner. Moreover, by performing cross-species comparison of these circuits, we have begun to gain insight into how reweighting of sensory inputs to P1 neurons underlies species-specific mate recognition. Our results suggest how variation at flexible nodes within the nervous system can serve as a substrate for behavioral evolution, shedding light on the types of changes that are possible and preferable within brain circuits.
Using opsin genes to see through the eyes of a fish
Many animals are highly visual. They view their world through photoreceptors sensitive to different wavelengths of light. Animal survival and optimal behavioral performance may select for varying photoreceptor sensitivities depending on animal habitat or visual tasks. Our goal is to understand what drives visual diversity from both an evolutionary and molecular perspective. The group of more than 2000 cichlid fish species are an ideal system for examining such diversity. Cichlid are a colorful group of fresh water fishes. They have undergone adaptive radiation throughout Africa and the new world and occur in rivers and lakes that vary in water clarity. They are also behaviorally complex, having diverse behaviors for foraging, mate choice and even parental care. As a result, cichlids have highly diverse visual systems with cone sensitivities shifting by 30-90 nm between species. Although this group has seven cone opsin genes, individual species differ in which subset of the cone opsins they express. Some species show developmental shifts in opsin expression, switching from shorter to longer wavelength opsins through ontogeny. Other species modify that developmental program to express just one of the sets, causing the large sensitivity differences. Cichlids are therefore natural mutants for opsin expression. We have used cichlid diversity to explore the relationship between visual sensitivities and ecology. We have also exploited the genomic power of the cichlid system to identify genes and mutations that cause opsin expression shifts. Ultimately, our goal is to learn how different cichlid species see the world and whether differences matter. Behavioral experiments suggest they do indeed use color vision to survive and thrive. Cichlids therefore are a unique model for exploring how visual systems evolve in a changing world.
The neural mechanisms for song evaluation in fruit flies
How does the brain decode the meaning of sound signals, such as music and courtship songs? We believe that the fruit fly Drosophila melanogaster is an ideal model for answering this question, as it offers a comprehensive range of tools and assays which allow us to dissect the mechanisms underlying sound perception and evaluation in the brain. During the courtship behavior, male fruit flies emit “courtship songs” by vibrating their wings. Interestingly, the fly song has a species-specific rhythm, which indeed increases the female’s receptivity for copulation as well as male’s courtship behavior itself. How song signals, especially the species-specific sound rhythm, are evaluated in the fly brain? To tackle this question, we are exploring the features of the fly auditory system systematically. In this lecture, I will talk about our recent findings on the neural basis for song evaluation in fruit flies.
As soon as there was life there was danger
Organisms face challenges to survival throughout life. When we freeze or flee in danger, we often feel fear. Tracing the deep history of danger gives a different perspective. The first cells living billions of years ago had to detect and respond to danger in order to survive. Life is about not being dead, and behavior is a major way that organisms hold death off. Although behavior does not require a nervous system, complex organisms have brain circuits for detecting and responding to danger, the deep roots of which go back to the first cells. But these circuits do not make fear, and fear is not the cause of why we freeze or flee. Fear a human invention; a construct we use to account for what happens in our minds when we become aware that we are in harm’s way. This requires a brain that can personally know that it existed in the past, that it is the entity that might be harmed in the present, and that it will cease to exist it the future. If other animals have conscious experiences, they cannot have the kinds of conscious experiences we have because they do not have the kinds of brains we have. This is not meant as a denial of animal consciousness; it is simply a statement about the fact that every species has a different brain. Nor is it a declaration about the wonders of the human brain, since we have done some wonderful, but also horrific, things with our brains. In fact, we are on the way to a climatic disaster that will not, as some suggest, destroy the Earth. But it will make it inhabitable for our kind, and other organisms with high energy demands. Bacteria have made it for billions of years and will likely be fine. The rest is up for grabs, and, in a very real sense, up to us.
Evolving Neural Networks
Evolution has shaped neural circuits in a very specific manner, slowly and aimlessly incorporating computational innovations that increased the chances to survive and reproduce of the newly born species. The discoveries done by the Evolutionary Developmental (Evo-Devo) biology field during the last decades have been crucial for our understanding of the gradual emergence of such innovations. In turn, Computational Neuroscience practitioners modeling the brain are becoming increasingly aware of the need to build models that incorporate these innovations to replicate the computational strategies used by the brain to solve a given task. The goal of this workshop is to bring together experts from Systems and Computational Neuroscience, Machine Learning and the Evo-Devo field to discuss if and how knowing the evolutionary history of neural circuits can help us understand the way the brain works, as well as the relative importance of learned VS innate neural mechanisms.
Causal coupling between neural activity, metabolism, and behavior across the Drosophila brain
Coordinated activity across networks of neurons is a hallmark of both resting and active behavioral states in many species, including worms, flies, fish, mice and humans. These global patterns alter energy metabolism in the brain over seconds to hours, making oxygen consumption and glucose uptake widely used proxies of neural activity. However, whether changes in neural activity are causally related to changes in metabolic flux in intact circuits on the sub-second timescales associated with behavior, is unclear. Moreover, it is unclear whether differences between rest and action are associated with spatiotemporally structured changes in neuronal energy metabolism at the subcellular level. My work combines two-photon microscopy across the fruit fly brain with sensors that allow simultaneous measurements of neural activity and metabolic flux, across both resting and active behavioral states. It demonstrates that neural activity drives changes in metabolic flux, creating a tight coupling between these signals that can be measured across large-scale brain networks. Further, using local optogenetic perturbation, I show that even transient increases in neural activity result in rapid and persistent increases in cytosolic ATP, suggesting that neuronal metabolism predictively allocates resources to meet the energy demands of future neural activity. Finally, these studies reveal that the initiation of even minimal behavioral movements causes large-scale changes in the pattern of neural activity and energy metabolism, revealing unexpectedly widespread engagement of the central brain.
Representations of abstract relations in infancy
Abstract relations are considered the pinnacle of human cognition, allowing analogical and logical reasoning, and possibly setting humans apart from other animal species. Such relations cannot be represented in a perceptual code but can easily be represented in a propositional language of thought, where relations between objects are represented by abstract discrete symbols. Focusing on the abstract relations same and different, I will show that (1) there is a discontinuity along ontogeny with respect to the representations of abstract relations, but (2) young infants already possess representations of same and different. Finally, (3) I will investigate the format of representation of abstract relations in young infants, arguing that those representations are not discrete, but rather built by juxtaposing abstract representations of entities.
Lessons from the cockpit of a fly
Flies represent nearly 10% of all species described by science and are arguably unmatched among flying organisms in their aerial agility. The flight trajectory of flies often consists of crisp straight flight segments interspersed with rapid changes in course called body saccades. Recent advances in genetic tools have made it possible to explore the neurobiological circuitry underlying these two distinct modes of fly flight behavior.
Co-tuned, balanced excitation and inhibition in olfactory memory networks
Odor memories are exceptionally robust and essential for the survival of many species. In rodents, the olfactory cortex shows features of an autoassociative memory network and plays a key role in the retrieval of olfactory memories (Meissner-Bernard et al., 2019). Interestingly, the telencephalic area Dp, the zebrafish homolog of olfactory cortex, transiently enters a state of precise balance during the presentation of an odor (Rupprecht and Friedrich, 2018). This state is characterized by large synaptic conductances (relative to the resting conductance) and by co-tuning of excitation and inhibition in odor space and in time at the level of individual neurons. Our aim is to understand how this precise synaptic balance affects memory function. For this purpose, we build a simplified, yet biologically plausible spiking neural network model of Dp using experimental observations as constraints: besides precise balance, key features of Dp dynamics include low firing rates, odor-specific population activity and a dominance of recurrent inputs from Dp neurons relative to afferent inputs from neurons in the olfactory bulb. To achieve co-tuning of excitation and inhibition, we introduce structured connectivity by increasing connection probabilities and/or strength among ensembles of excitatory and inhibitory neurons. These ensembles are therefore structural memories of activity patterns representing specific odors. They form functional inhibitory-stabilized subnetworks, as identified by the “paradoxical effect” signature (Tsodyks et al., 1997): inhibition of inhibitory “memory” neurons leads to an increase of their activity. We investigate the benefits of co-tuning for olfactory and memory processing, by comparing inhibitory-stabilized networks with and without co-tuning. We find that co-tuned excitation and inhibition improves robustness to noise, pattern completion and pattern separation. In other words, retrieval of stored information from partial or degraded sensory inputs is enhanced, which is relevant in light of the instability of the olfactory environment. Furthermore, in co-tuned networks, odor-evoked activation of stored patterns does not persist after removal of the stimulus and may therefore subserve fast pattern classification. These findings provide valuable insights into the computations performed by the olfactory cortex, and into general effects of balanced state dynamics in associative memory networks.
BrainGlobe: a Python ecosystem for computational (neuro)anatomy
Neuroscientists routinely perform experiments aimed at recording or manipulating neural activity, uncovering physiological processes underlying brain function or elucidating aspects of brain anatomy. Understanding how the brain generates behaviour ultimately depends on merging the results of these experiments into a unified picture of brain anatomy and function. We present BrainGlobe, a new initiative aimed at developing common Python tools for computational neuroanatomy. These include cellfinder for fast, accurate cell detection in whole-brain microscopy images, brainreg for aligning images to a reference atlas, and brainrender for visualisation of anatomically registered data. These software packages are developed around the BrainGlobe Atlas API. This API provides a common Python interface to download and interact with reference brain atlases from multiple species (including human, mouse and larval zebrafish). This allows software to be developed agnostic to the atlas and species, increasing adoption and interoperability of software tools in neuroscience.
On cognitive maps and reinforcement learning in large-scale animal behaviour
Bats are extreme aviators and amazing navigators. Many bat species nightly commute dozens of kilometres in search of food, and some bat species annually migrate over thousands of kilometres. Studying bats in their natural environment has always been extremely challenging because of their small size (mostly <50 gr) and agile nature. We have recently developed novel miniature technology allowing us to GPS-tag small bats, thus opening a new window to document their behaviour in the wild. We have used this technology to track fruit-bats pups over 5 months from birth to adulthood. Following the bats’ full movement history allowed us to show that they use novel short-cuts which are typical for cognitive-map based navigation. In a second study, we examined how nectar-feeding bats make foraging decisions under competition. We show that by relying on a simple reinforcement learning strategy, the bats can divide the resource between them without aggression or communication. Together, these results demonstrate the power of the large scale natural approach for studying animal behavior.
Advances and setbacks in prion biology
Transmissible spongiform encephalopathies (TSEs) are neurodegenerative diseases of humans and many animal species caused by prions. The main constituent of prions is PrPSc, an aggregated moiety of the host-derived membrane glycolipoprotein PrPC. Prions were found to encipher many phenotypic, genetically stable TSE variants. The latter is very surprising, since PrPC is encoded by the host genome and all prion strains share the same amino acid sequence. Here I will review what is known about the infectivity, the neurotoxicity, and the neuroinvasiveness of prions. Also, I will explain why I regard the prion strain question as a fascinating challenge – with implications that go well beyond prion science. Finally, I will report some recent results obtained in my laboratory, which is attempting to address the strain question and some other basic issues of prion biology with a “systems” approach that utilizes organic chemistry, photophysics, proteomics, and mouse transgenesis.
Neural Population Geometry across model scale: A tool for cross-species functional comparison of visual brain regions
COSYNE 2023
Thoughtful faces: Using facial features to infer naturalistic cognitive processing across species
COSYNE 2023
Information-preserving modulation as a principle of sensory coding during locomotion across species
COSYNE 2025
Invariant synaptic density across species links functional stability and wiring optimization principles
COSYNE 2025
Structural organization of inhibitory neurons is preserved across species and cortical areas
COSYNE 2025
Awake rat MRI scanning - A contribution to the AwakeRodent multi-center, multi-species, multi-modality study
FENS Forum 2024
Circadian regulation in non-mammalian species - A third-eye view from the bearded dragon
FENS Forum 2024
Context-guided sequence memory across species
FENS Forum 2024
Cross species single-cell/nucleus RNA-seq uncovers the evolutionarily conserved pathological mechanisms of vascular contribution to Alzheimer’s disease
FENS Forum 2024
Hippocampus basal radial glia morphotypes across different mammalian species
FENS Forum 2024
Histological, cellular, and molecular changes induced by chronic exposure to the (neuro)endocrine disruptor tributyltin in a widely used invertebrate model species
FENS Forum 2024
A machine learning toolbox to detect and compare sharp-wave ripples across species
FENS Forum 2024
Mapping neural recovery: Comparative molecular insights into spinal cord injury across species
FENS Forum 2024
Molecular and cellular evolution of the amygdala across species analyzed by single-nucleus transcriptome profiling
FENS Forum 2024
Morphological and volumetric analyses of the brain of two pinniped species – do they show parallels with cetacean brains?
FENS Forum 2024
Pose-guided transformers for non-invasive re-identification methods of unmarked species
FENS Forum 2024
Quenching mitochondrial reactive oxygen species in oligodendrocytes protects axonal function in aging and neuroinflammatory disease
FENS Forum 2024
Screening AAV delivery routes, capsids, and promoters for cortex-wide functional and long-term stable access to brain function in large-brain species
FENS Forum 2024
Sharing the spotlight: Uncovering common attentional dynamics across species
FENS Forum 2024
Species-specific properties of parkinsonian beta oscillations suggest diverging generation mechanisms
FENS Forum 2024
Subcortical and cortical inputs to anterior insula and claustrum in macaque and mouse suggest possible species-specific implications for the role of interoceptive inference in consciousness
FENS Forum 2024
Tactile perception and memory in rats and humans: A general framework across tasks and species
FENS Forum 2024
Deep Reinforcement Learning for anatomically accurate musculoskeletal models to investigate neural control of movement across animal species
Neuromatch 5