← Back

Spike Timing Dependent Plasticity

Topic spotlight
TopicWorld Wide

Spike Timing Dependent Plasticity

Discover seminars, jobs, and research tagged with Spike Timing Dependent Plasticity across World Wide.
2 curated items2 Seminars
Updated about 4 years ago
2 items · Spike Timing Dependent Plasticity
2 results
SeminarNeuroscienceRecording

NMC4 Short Talk: Systematic exploration of neuron type differences in standard plasticity protocols employing a novel pathway based plasticity rule

Patricia Rubisch (she/her)
University of Edinburgh
Dec 1, 2021

Spike Timing Dependent Plasticity (STDP) is argued to modulate synaptic strength depending on the timing of pre- and postsynaptic spikes. Physiological experiments identified a variety of temporal kernels: Hebbian, anti-Hebbian and symmetrical LTP/LTD. In this work we present a novel plasticity model, the Voltage-Dependent Pathway Model (VDP), which is able to replicate those distinct kernel types and intermediate versions with varying LTP/LTD ratios and symmetry features. In addition, unlike previous models it retains these characteristics for different neuron models, which allows for comparison of plasticity in different neuron types. The plastic updates depend on the relative strength and activation of separately modeled LTP and LTD pathways, which are modulated by glutamate release and postsynaptic voltage. We used the 15 neuron type parametrizations in the GLIF5 model presented by Teeter et al. (2018) in combination with the VDP to simulate a range of standard plasticity protocols including standard STDP experiments, frequency dependency experiments and low frequency stimulation protocols. Slight variation in kernel stability and frequency effects can be identified between the neuron types, suggesting that the neuron type may have an effect on the effective learning rule. This plasticity model builds a middle ground between biophysical and phenomenological models allowing not just for the combination with more complex and biophysical neuron models, but is also computationally efficient so can be used in network simulations. Therefore it offers the possibility to explore the functional role of the different kernel types and electrophysiological differences in heterogeneous networks in future work.

SeminarNeuroscienceRecording

STDP and the transfer of rhythmic signals in the brain

Maoz Shamir
Ben Gurion University
Mar 9, 2021

Rhythmic activity in the brain has been reported in relation to a wide range of cognitive processes. Changes in the rhythmic activity have been related to pathological states. These observations raise the question of the origin of these rhythms: can the mechanisms responsible for generation of these rhythms and that allow the propagation of the rhythmic signal be acquired via a process of learning? In my talk I will focus on spike timing dependent plasticity (STDP) and examine under what conditions this unsupervised learning rule can facilitate the propagation of rhythmic activity downstream in the central nervous system. Next, the I will apply the theory of STDP to the whisker system and demonstrate how STDP can shape the distribution of preferred phases of firing in a downstream population. Interestingly, in both these cases STDP dynamics does not relax to a fixed-point solution, rather the synaptic weights remain dynamic. Nevertheless, STDP allows for the system to retain its functionality in the face of continuous remodeling of the entire synaptic population.