← Back

Splicing

Topic spotlight
TopicWorld Wide

splicing

Discover seminars, jobs, and research tagged with splicing across World Wide.
18 curated items11 Seminars7 ePosters
Updated about 2 months ago
18 items · splicing
18 results
SeminarNeuroscience

NF1 exon 51 alternative splicing: functional implications in Central Nervous System (CNS) Cells

Charoula Peta
Biomedical research Foundation of the Academy of Athens
Oct 21, 2025
SeminarNeuroscience

Expanding mechanisms and therapeutic targets for neurodegenerative disease

Aaron D. Gitler
Department of Genetics, Stanford University
Jun 4, 2025

A hallmark pathological feature of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is the depletion of RNA-binding protein TDP-43 from the nucleus of neurons in the brain and spinal cord. A major function of TDP-43 is as a repressor of cryptic exon inclusion during RNA splicing. By re-analyzing RNA-sequencing datasets from human FTD/ALS brains, we discovered dozens of novel cryptic splicing events in important neuronal genes. Single nucleotide polymorphisms in UNC13A are among the strongest hits associated with FTD and ALS in human genome-wide association studies, but how those variants increase risk for disease is unknown. We discovered that TDP-43 represses a cryptic exon-splicing event in UNC13A. Loss of TDP-43 from the nucleus in human brain, neuronal cell lines and motor neurons derived from induced pluripotent stem cells resulted in the inclusion of a cryptic exon in UNC13A mRNA and reduced UNC13A protein expression. The top variants associated with FTD or ALS risk in humans are located in the intron harboring the cryptic exon, and we show that they increase UNC13A cryptic exon splicing in the face of TDP-43 dysfunction. Together, our data provide a direct functional link between one of the strongest genetic risk factors for FTD and ALS (UNC13A genetic variants), and loss of TDP-43 function. Recent analyses have revealed even further changes in TDP-43 target genes, including widespread changes in alternative polyadenylation, impacting expression of disease-relevant genes (e.g., ELP1, NEFL, and TMEM106B) and providing evidence that alternative polyadenylation is a new facet of TDP-43 pathology.

SeminarNeuroscience

Alternative Splicing and Isoforms: role in brain function and pathology

Mangoura Dimitra
Basic Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
May 14, 2024
SeminarNeuroscience

Investigating dynamiCa++l mechanisms underlying cortical development and disease

Georgia Panagiotakos
Icahn School of Medicine at Mount Sinai
May 7, 2024
SeminarNeuroscienceRecording

Targeting alternative splicing of SYNGAP1 using antisense oligonucleotides

Benjamin Prosser
University of Pennsylvania Perelman School of Medicine, PhD
Sep 28, 2022
SeminarNeuroscienceRecording

Dancing to a Different Tune: TANGO Gives Hope for Dravet Syndrome

Lori Isom
University of Michigan
Oct 19, 2021

The long-term goal of our research is to understand the mechanisms of SUDEP, defined as Sudden, Unexpected, witnessed or unwitnessed, nontraumatic and non-drowning Death in patients with EPilepsy, excluding cases of documented status epilepticus. The majority of SUDEP patients die during sleep. SUDEP is the most devastating consequence of epilepsy, yet little is understood about its causes and no biomarkers exist to identify at risk patients. While SUDEP accounts for 7.5-20% of all epilepsy deaths, SUDEP risk in the genetic epilepsies varies with affected genes. Patients with ion channel gene variants have the highest SUDEP risk. Indirect evidence variably links SUDEP to seizure-induced apnea, pulmonary edema, dysregulation of cerebral circulation, autonomic dysfunction, and cardiac arrhythmias. Arrhythmias may be primary or secondary to hormonal or metabolic changes, or autonomic discharges. When SUDEP is compared to Sudden Cardiac Death secondary to Long QT Syndrome, especially to LQT3 linked to variants in the voltage-gated sodium channel (VGSC) gene SCN5A, there are parallels in the circumstances of death. To gain insight into SUDEP mechanisms, our approach has focused on channelopathies with high SUDEP incidence. One such disorder is Dravet syndrome (DS), a devastating form of developmental and epileptic encephalopathy (DEE) characterized by multiple pharmacoresistant seizure types, intellectual disability, ataxia, and increased mortality. While all patients with epilepsy are at risk for SUDEP, DS patients may have the highest risk, up to 20%, with a mean age at SUDEP of 4.6 years. Over 80% of DS is caused by de novo heterozygous loss-of-function (LOF) variants in SCN1A, encoding the VGSC Nav1.1  subunit, resulting in haploinsufficiency. A smaller cohort of patients with DS or a more severe DEE have inherited, homozygous LOF variants in SCN1B, encoding the VGSC 1/1B non-pore-forming subunits. A related DEE, Early Infantile EE (EIEE) type 13, is linked to de novo heterozygous gain-of-function variants in SCN8A, encoding the VGSC Nav1.6. VGSCs underlie the rising phase and propagation of action potentials in neurons and cardiac myocytes. SCN1A, SCN8A, and SCN1B are expressed in both the heart and brain of humans and mice. Because of this, we proposed that cardiac arrhythmias contribute to the mechanism of SUDEP in DEE. We have taken a novel approach to the development of therapeutics for DS in collaboration with Stoke Therapeutics. We employed Targeted Augmentation of Nuclear Gene Output (TANGO) technology, which modulates naturally occurring, non-productive splicing events to increase target gene and protein expression and ameliorate disease phenotype in a mouse model. We identified antisense oligonucleotides (ASOs) that specifically increase the expression of productive Scn1a transcript in human and mouse cell lines, as well as in mouse brain. We showed that a single intracerebroventricular dose of a lead ASO at postnatal day 2 or 14 reduced the incidence of electrographic seizures and SUDEP in the F1:129S-Scn1a+/- x C57BL/6J mouse model of DS. Increased expression of productive Scn1a transcript and NaV1.1 protein were confirmed in brains of treated mice. Our results suggest that TANGO may provide a unique, gene-specific approach for the treatment of DS.

SeminarNeuroscienceRecording

Epigenetic regulation of alternative splicing in the context of cocaine reward

Elizabeth A Heller, PhD
The University of Pennsylvania, Penn Epigenetics Institute, Systems Pharmacology & Translational Therapeutics
Oct 5, 2021

Neuronal alternative splicing is a key gene regulatory mechanism in the brain. However, the spliceosome machinery is insufficient to fully specify splicing complexity. In considering the role of the epigenome in activity-dependent alternative splicing, we and others find the histone modification H3K36me3 to be a putative splicing regulator. In this study, we found that mouse cocaine self-administration caused widespread differential alternative splicing, concomitant with the enrichment of H3K36me3 at differentially spliced junctions. Importantly, only targeted epigenetic editing can distinguish between a direct role of H3K36me3 in splicing and an indirect role via regulation of splice factor expression elsewhere on the genome. We targeted Srsf11, which was both alternatively spliced and H3K36me3 enriched in the brain following cocaine self-administration. Epigenetic editing of H3K36me3 at Srsf11 was sufficient to drive its alternative splicing and enhanced cocaine self-administration, establishing the direct causal relevance of H3K36me3 to alternative splicing of Srsf11 and to reward behavior.

SeminarNeuroscience

Synapse Specification - from RNA splicing to Autism

Peter Scheiffele
Nov 16, 2020
ePoster

Activity-dependent splicing is crucial for learning and memory

Julien Courtin*, Sivan Kanner*, Cloé L’Heraux, Coline Riffault, Christian Müller, Andreas Lüthi, Peter Scheiffele#, Oriane Mauger

FENS Forum 2024

ePoster

Alternative splicing of Cav2.1 EF-hand contributes to the tightness of calcium influx-neurotransmitter release coupling at mouse cerebellar synapses

Kohgaku Eguchi, Le Monnier Elodie, Ryuichi Shigemoto

FENS Forum 2024

ePoster

Extending MALAT1 activity to the modulation of LSD1 alternative splicing: A novel cell-autonomous mechanism devoted to neuronal homeostasis

Elena Romito, Chiara Forastieri, Arteda Paplekaj, Andrea De Donato, Sara Testa, Emanuela Toffolo, Elena Battaglioli, Francesco Rusconi

FENS Forum 2024

ePoster

A novel role for LSD1 splicing modulation in homeostatic adaptation to chronic stress

Arteda Paplekaj, Chiara Forastieri, Elena Romito, Andrea de Donato, Sara Testa, Emanuela Toffolo, Elena Battaglioli, Francesco Rusconi

FENS Forum 2024

ePoster

A specific GPR56/ADGRG1 splicing isoform is associated with suicidal behavior and antidepressant response in major depressive disorder

Montaine Lion, El Chérif Ibrahim, Raoul Belzeaux, Eleni Tzavara

FENS Forum 2024

ePoster

RNA splicing revisited: New molecular tools for analysis of cryptic splice donors at single cell resolution

Magnus Harnau, Barbara Schweissthal, Leonie Emde, Steffen Fricke, Jochen Meier

FENS Forum 2024

ePoster

TAF1 splicing variants and prolyl hydroxylase inhibitors therapy in a mouse model of Huntington’s disease

Claudia Rodríguez-López, Ivó H Hernández, Marcos Casado Barbero, Jose J Lucas

FENS Forum 2024