← Back

Stabilized Supralinear Network

Topic spotlight
TopicWorld Wide

Stabilized Supralinear Network

Discover seminars, jobs, and research tagged with Stabilized Supralinear Network across World Wide.
4 curated items2 Seminars2 ePosters
Updated over 3 years ago
4 items · Stabilized Supralinear Network
4 results
SeminarNeuroscienceRecording

The balance of excitation and inhibition and a canonical cortical computation

Yashar Ahmadian
Cambridge, UK
Apr 26, 2022

Excitatory and inhibitory (E & I) inputs to cortical neurons remain balanced across different conditions. The balanced network model provides a self-consistent account of this observation: population rates dynamically adjust to yield a state in which all neurons are active at biological levels, with their E & I inputs tightly balanced. But global tight E/I balance predicts population responses with linear stimulus-dependence and does not account for systematic cortical response nonlinearities such as divisive normalization, a canonical brain computation. However, when necessary connectivity conditions for global balance fail, states arise in which only a localized subset of neurons are active and have balanced inputs. We analytically show that in networks of neurons with different stimulus selectivities, the emergence of such localized balance states robustly leads to normalization, including sublinear integration and winner-take-all behavior. An alternative model that exhibits normalization is the Stabilized Supralinear Network (SSN), which predicts a regime of loose, rather than tight, E/I balance. However, an understanding of the causal relationship between E/I balance and normalization in SSN and conditions under which SSN yields significant sublinear integration are lacking. For weak inputs, SSN integrates inputs supralinearly, while for very strong inputs it approaches a regime of tight balance. We show that when this latter regime is globally balanced, SSN cannot exhibit strong normalization for any input strength; thus, in SSN too, significant normalization requires localized balance. In summary, we causally and quantitatively connect a fundamental feature of cortical dynamics with a canonical brain computation. Time allowing I will also cover our work extending a normative theoretical account of normalization which explains it as an example of efficient coding of natural stimuli. We show that when biological noise is accounted for, this theory makes the same prediction as the SSN: a transition to supralinear integration for weak stimuli.

SeminarNeuroscienceRecording

A theory for Hebbian learning in recurrent E-I networks

Samuel Eckmann
Gjorgjieva lab, Max Planck Institute for Brain Research, Frankfurt, Germany
May 19, 2021

The Stabilized Supralinear Network is a model of recurrently connected excitatory (E) and inhibitory (I) neurons with a supralinear input-output relation. It can explain cortical computations such as response normalization and inhibitory stabilization. However, the network's connectivity is designed by hand, based on experimental measurements. How the recurrent synaptic weights can be learned from the sensory input statistics in a biologically plausible way is unknown. Earlier theoretical work on plasticity focused on single neurons and the balance of excitation and inhibition but did not consider the simultaneous plasticity of recurrent synapses and the formation of receptive fields. Here we present a recurrent E-I network model where all synaptic connections are simultaneously plastic, and E neurons self-stabilize by recruiting co-tuned inhibition. Motivated by experimental results, we employ a local Hebbian plasticity rule with multiplicative normalization for E and I synapses. We develop a theoretical framework that explains how plasticity enables inhibition balanced excitatory receptive fields that match experimental results. We show analytically that sufficiently strong inhibition allows neurons' receptive fields to decorrelate and distribute themselves across the stimulus space. For strong recurrent excitation, the network becomes stabilized by inhibition, which prevents unconstrained self-excitation. In this regime, external inputs integrate sublinearly. As in the Stabilized Supralinear Network, this results in response normalization and winner-takes-all dynamics: when two competing stimuli are presented, the network response is dominated by the stronger stimulus while the weaker stimulus is suppressed. In summary, we present a biologically plausible theoretical framework to model plasticity in fully plastic recurrent E-I networks. While the connectivity is derived from the sensory input statistics, the circuit performs meaningful computations. Our work provides a mathematical framework of plasticity in recurrent networks, which has previously only been studied numerically and can serve as the basis for a new generation of brain-inspired unsupervised machine learning algorithms.

ePoster

Plasticity-driven circuit self-organization on spiking stabilized supralinear networks

Raul Adell Segarra, Dylan Festa, Dimitra Maoutsa, Julijana Gjorgjieva

Bernstein Conference 2024

ePoster

Dynamics-neutral growth of stochastic stabilized supralinear networks

Puria Radmard, Wayne WM Soo, Máté Lengyel

COSYNE 2023