← Back

State Changes

Topic spotlight
TopicWorld Wide

state changes

Discover seminars, jobs, and research tagged with state changes across World Wide.
6 curated items3 Seminars3 ePosters
Updated about 4 years ago
6 items · state changes
6 results
SeminarNeuroscienceRecording

The role of the primate prefrontal cortex in inferring the state of the world and predicting change

Ramon Bartolo
Averbeck lab, Nation Institute of Mental Health
Sep 7, 2021

In an ever-changing environment, uncertainty is omnipresent. To deal with this, organisms have evolved mechanisms that allow them to take advantage of environmental regularities in order to make decisions robustly and adjust their behavior efficiently, thus maximizing their chances of survival. In this talk, I will present behavioral evidence that animals perform model-based state inference to predict environmental state changes and adjust their behavior rapidly, rather than slowly updating choice values. This model-based inference process can be described using Bayesian change-point models. Furthermore, I will show that neural populations in the prefrontal cortex accurately predict behavioral switches, and that the activity of these populations is associated with Bayesian estimates. In addition, we will see that learning leads to the emergence of a high-dimensional representational subspace that can be reused when the animals re-learn a previously learned set of action-value associations. Altogether, these findings highlight the role of the PFC in representing a belief about the current state of the world.

SeminarNeuroscience

Rapid State Changes Account for Apparent Brain and Behavior Variability

David McCormick
University of Oregon
Sep 16, 2020

Neural and behavioral responses to sensory stimuli are notoriously variable from trial to trial. Does this mean the brain is inherently noisy or that we don’t completely understand the nature of the brain and behavior? Here we monitor the state of activity of the animal through videography of the face, including pupil and whisker movements, as well as walking, while also monitoring the ability of the animal to perform a difficult auditory or visual task. We find that the state of the animal is continuously changing and is never stable. The animal is constantly becoming more or less activated (aroused) on a second and subsecond scale. These changes in state are reflected in all of the neural systems we have measured, including cortical, thalamic, and neuromodulatory activity. Rapid changes in cortical activity are highly correlated with changes in neural responses to sensory stimuli and the ability of the animal to perform auditory or visual detection tasks. On the intracellular level, these changes in forebrain activity are associated with large changes in neuronal membrane potential and the nature of network activity (e.g. from slow rhythm generation to sustained activation and depolarization). Monitoring cholinergic and noradrenergic axonal activity reveals widespread correlations across the cortex. However, we suggest that a significant component of these rapid state changes arise from glutamatergic pathways (e.g. corticocortical or thalamocortical), owing to their rapidity. Understanding the neural mechanisms of state-dependent variations in brain and behavior promises to significantly “denoise” our understanding of the brain.

SeminarNeuroscienceRecording

Recurrent network models of adaptive and maladaptive learning

Kanaka Rajan
Icahn School of Medicine at Mount Sinai
Apr 7, 2020

During periods of persistent and inescapable stress, animals can switch from active to passive coping strategies to manage effort-expenditure. Such normally adaptive behavioural state transitions can become maladaptive in disorders such as depression. We developed a new class of multi-region recurrent neural network (RNN) models to infer brain-wide interactions driving such maladaptive behaviour. The models were trained to match experimental data across two levels simultaneously: brain-wide neural dynamics from 10-40,000 neurons and the realtime behaviour of the fish. Analysis of the trained RNN models revealed a specific change in inter-area connectivity between the habenula (Hb) and raphe nucleus during the transition into passivity. We then characterized the multi-region neural dynamics underlying this transition. Using the interaction weights derived from the RNN models, we calculated the input currents from different brain regions to each Hb neuron. We then computed neural manifolds spanning these input currents across all Hb neurons to define subspaces within the Hb activity that captured communication with each other brain region independently. At the onset of stress, there was an immediate response within the Hb/raphe subspace alone. However, RNN models identified no early or fast-timescale change in the strengths of interactions between these regions. As the animal lapsed into passivity, the responses within the Hb/raphe subspace decreased, accompanied by a concomitant change in the interactions between the raphe and Hb inferred from the RNN weights. This innovative combination of network modeling and neural dynamics analysis points to dual mechanisms with distinct timescales driving the behavioural state transition: early response to stress is mediated by reshaping the neural dynamics within a preserved network architecture, while long-term state changes correspond to altered connectivity between neural ensembles in distinct brain regions.

ePoster

Broadband high-frequency activity indicates brain state changes in human visual cortex

Paul Schmid, Stefan Dürschmid

FENS Forum 2024

ePoster

Fear-dependent brain state changes in perception and sensory representation in larvae zebrafish

Conrad Lee, Leandro A Scholz, Ethan K Scott

FENS Forum 2024

ePoster

Transcranial ultrasound neuromodulation induces metabolic and resting-state changes in amygdala

Julien Claron, Camille Giacometti, Sameer Manickam, Valentine Morel-Latour, Charles R.E. Wilson, Franck Lamberton, Céline Amiez, Fadila Hadj-Bouziane, Jérôme Sallet

FENS Forum 2024