Statistical Analysis
statistical analysis
Pranav Nerurkar
Join our comprehensive online internship program focusing on Two Sample Hypothesis Testing, designed for students eager to delve into the world of statistical analysis and coding. This internship offers a unique blend of theoretical learning and practical application, providing participants with a robust understanding of hypothesis testing using real-world data. Key features include Interactive Video Lectures, Hands-On Coding Assignments, Practical Applications, Mentorship and Support, and Certification.
NMC4 Short Talk: Maggot brain, mirror image? A statistical analysis of bilateral symmetry in an insect brain connectome
Neuroscientists have many questions about connectomes that revolve around the ability to compare networks. For example, comparing connectomes could help explain how neural wiring is related to individual differences, genetics, disease, development, or learning. One such question is that of bilateral symmetry: are the left and right sides of a connectome the same? Here, we investigate the bilateral symmetry of a recently presented connectome of an insect brain, the Drosophila larva. We approach this question from the perspective of two-sample testing for networks. First, we show how this question of “sameness” can be framed as a variety of different statistical hypotheses, each with different assumptions. Then, we describe test procedures for each of these hypotheses. We show how these different test procedures perform on both the observed connectome as well as a suite of synthetic perturbations to the connectome. We also point out that these tests require careful attention to parameter alignment and differences in network density in order to provide biologically meaningful results. Taken together, these results provide the first statistical characterization of bilateral symmetry for an entire brain at the single-neuron level, while also giving practical recommendations for future comparisons of connectome networks.
Detecting Covert Cognitive States from Neural Population Recordings in Prefrontal Cortex
The neural mechanisms underlying decision-making are typically examined by statistical analysis of large numbers of trials from sequentially recorded single neurons. Averaging across sequential recordings, however, obscures important aspects of decision-making such as variations in confidence and 'changes of mind' (CoM) that occur at variable times on different trials. I will show that the covert decision variables (DV) can be tracked dynamically on single behavioral trials via simultaneous recording of large neural populations in prefrontal cortex. Vacillations of the neural DV, in turn, identify candidate CoM in monkeys, which closely match the known properties of human CoM. Thus simultaneous population recordings can provide insight into transient, internal cognitive states that are otherwise undetectable.