Students
students
Prof. (Dr.) Swagatam Das
We are seeking highly qualified and motivated individuals for the positions of Assistant and Associate Professors in Artificial Intelligence (AI) and Machine Learning (ML). The successful candidate will join our esteemed faculty in the Institute for Advancing Intelligence (IAI), TCG Centre for Research and Education in Science and Technology (CREST), Kolkata, India, and contribute to our commitment to excellence in research, teaching, and academic services. TCG CREST has set up the campus in Sector V, Salt Lake City, Kolkata, India. State-of-the-art laboratories and research facilities for the individual Institutes, spacious classrooms and technology interventions for executing both off-line and on-line academic classes and programs, conference rooms, and other infrastructures provide the students and the faculty an ideal environment for creative exchanges and high-end research collaborations.
An Ecological and Objective Neural Marker of Implicit Unfamiliar Identity Recognition
We developed a novel paradigm measuring implicit identity recognition using Fast Periodic Visual Stimulation (FPVS) with EEG among 16 students and 12 police officers with normal face processing abilities. Participants' neural responses to a 1-Hz tagged oddball identity embedded within a 6-Hz image stream revealed implicit recognition with high-quality mugshots but not CCTV-like images, suggesting optimal resolution requirements. Our findings extend previous research by demonstrating that even unfamiliar identities can elicit robust neural recognition signatures through brief, repeated passive exposure. This approach offers potential for objective validation of face processing abilities in forensic applications, including assessment of facial examiners, Super-Recognisers, and eyewitnesses, potentially overcoming limitations of traditional behavioral assessment methods.
Bernstein Student Workshop Series
The Bernstein Student Workshop Series is an initiative of the student members of the Bernstein Network. It provides a unique opportunity to enhance the technical exchange on a peer-to-peer basis. The series is motivated by the idea of bridging the gap between theoretical and experimental neuroscience by bringing together methodological expertise in the network. Unlike conventional workshops, a talented junior scientist will first give a tutorial about a specific theoretical or experimental technique, and then give a talk about their own research to demonstrate how the technique helps to address neuroscience questions. The workshop series is designed to cover a wide range of theoretical and experimental techniques and to elucidate how different techniques can be applied to answer different types of neuroscience questions. Combining the technical tutorial and the research talk, the workshop series aims to promote knowledge sharing in the community and enhance in-depth discussions among students from diverse backgrounds.
Bernstein Student Workshop Series
The Bernstein Student Workshop Series is an initiative of the student members of the Bernstein Network. It provides a unique opportunity to enhance the technical exchange on a peer-to-peer basis. The series is motivated by the idea of bridging the gap between theoretical and experimental neuroscience by bringing together methodological expertise in the network. Unlike conventional workshops, a talented junior scientist will first give a tutorial about a specific theoretical or experimental technique, and then give a talk about their own research to demonstrate how the technique helps to address neuroscience questions. The workshop series is designed to cover a wide range of theoretical and experimental techniques and to elucidate how different techniques can be applied to answer different types of neuroscience questions. Combining the technical tutorial and the research talk, the workshop series aims to promote knowledge sharing in the community and enhance in-depth discussions among students from diverse backgrounds.
Bernstein Student Workshop Series
The Bernstein Student Workshop Series is an initiative of the student members of the Bernstein Network. It provides a unique opportunity to enhance the technical exchange on a peer-to-peer basis. The series is motivated by the idea of bridging the gap between theoretical and experimental neuroscience by bringing together methodological expertise in the network. Unlike conventional workshops, a talented junior scientist will first give a tutorial about a specific theoretical or experimental technique, and then give a talk about their own research to demonstrate how the technique helps to address neuroscience questions. The workshop series is designed to cover a wide range of theoretical and experimental techniques and to elucidate how different techniques can be applied to answer different types of neuroscience questions. Combining the technical tutorial and the research talk, the workshop series aims to promote knowledge sharing in the community and enhance in-depth discussions among students from diverse backgrounds.
Implications of Vector-space models of Relational Concepts
Vector-space models are used frequently to compare similarity and dimensionality among entity concepts. What happens when we apply these models to relational concepts? What is the evidence that such models do apply to relational concepts? If we use such a model, then one implication is that maximizing surface feature variation should improve relational concept learning. For example, in STEM instruction, the effectiveness of teaching by analogy is often limited by students’ focus on superficial features of the source and target exemplars. However, in contrast to the prediction of the vector-space computational model, the strategy of progressive alignment (moving from perceptually similar to different targets) has been suggested to address this issue (Gentner & Hoyos, 2017), and human behavioral evidence has shown benefits from progressive alignment. Here I will present some preliminary data that supports the computational approach. Participants were explicitly instructed to match stimuli based on relations while perceptual similarity of stimuli varied parametrically. We found that lower perceptual similarity reduced accurate relational matching. This finding demonstrates that perceptual similarity may interfere with relational judgements, but also hints at why progressive alignment maybe effective. These are preliminary, exploratory data and I to hope receive feedback on the framework and to start a discussion in a group on the utility of vector-space models for relational concepts in general.
Experimental Neuroscience Bootcamp
This course provides a fundamental foundation in the modern techniques of experimental neuroscience. It introduces the essentials of sensors, motor control, microcontrollers, programming, data analysis, and machine learning by guiding students through the “hands on” construction of an increasingly capable robot. In parallel, related concepts in neuroscience are introduced as nature’s solution to the challenges students encounter while designing and building their own intelligent system.
Analogy Use in Parental Explanation
How and why are analogies spontaneously generated? Despite the prominence of analogy in learning and reasoning, there is little research on whether and how analogy is spontaneously generated in everyday settings. Here we fill this gap by gathering parents' answers to children's real questions, and examining analogy use in parental explanations. Study 1 found that parents used analogy spontaneously in their explanations, despite no prompt nor mention of analogy in the instruction. Study 2 found that these analogical explanations were rated highly by parents, schoolteachers, and university students alike. In Study 3, six-year-olds also rated good analogical explanations highly, but unlike their parents, did not rate them higher than causal, non-analogical explanations. We discuss what makes an analogy a good explanation, and how theories from both explanation and analogy research explain one’s motivation for spontaneously generating analogies.
From the Didactic to the Heuristic Use of Analogies in Science Teaching
Extensive research on science teaching has shown the effectiveness of analogies as a didactic tool which, when appropriately and effectively used, facilitates the learning process of abstract concepts. This seminar does not contradict the efficacy of such a didactic use of analogies in this seminar but switches attention and interest on their heuristic use in approaching and understanding of what previously unknown. Such a use of analogies derives from research with 10 to 17 year-olds, who, when asked to make predictions in novel situations and to then provide explanations about these predictions, they self-generated analogies and used them by reasoning on their basis. This heuristic use of analogies can be used in science teaching in revealing how students approach situations they have not considered before as well as the sources they draw upon in doing so.
Growing a world-class precision medicine industry
Monash Biomedical Imaging is part of the new $71.2 million Australian Precision Medicine Enterprise (APME) facility, which will deliver large-scale development and manufacturing of precision medicines and theranostic radiopharmaceuticals for industry and research. A key feature of the APME project is a high-energy cyclotron with multiple production clean rooms, which will be located on the Monash Biomedical Imaging (MBI) site in Clayton. This strategic co-location will facilitate radiochemistry, PET and SPECT research and clinical use of theranostic (therapeutic and diagnostic) radioisotopes produced on-site. In this webinar, MBI’s Professor Gary Egan and Dr Maggie Aulsebrook will explain how the APME will secure Australia’s supply of critical radiopharmaceuticals, build a globally competitive Australian manufacturing hub, and train scientists and engineers for the Australian workforce. They will cover the APME’s state-of-the-art 30 MeV and 18-24 MeV cyclotrons and radiochemistry facilities, as well as the services that will be accessible to students, scientists, clinical researchers, and pharmaceutical companies in Australia and around the world. The APME is a collaboration between Monash University, Global Medical Solutions Australia, and Telix Pharmaceuticals. Professor Gary Egan is Director of Monash Biomedical Imaging, Director of the ARC Centre of Excellence for Integrative Brain Function and a Distinguished Professor at the Turner Institute for Brain and Mental Health, Monash University. He is also lead investigator of the Victorian Biomedical Imaging Capability, and Deputy Director of the Australian National Imaging Facility. Dr Maggie Aulsebrook obtained her PhD in Chemistry at Monash University and specialises in the development and clinical translation of radiopharmaceuticals. She has led the development of several investigational radiopharmaceuticals for first-in-human application. Maggie leads the Radiochemistry Platform at Monash Biomedical Imaging.
A draft connectome for ganglion cell types of the mouse retina
The visual system of the brain is highly parallel in its architecture. This is clearly evident in the outputs of the retina, which arise from neurons called ganglion cells. Work in our lab has shown that mammalian retinas contain more than a dozen distinct types of ganglion cells. Each type appears to filter the retinal image in a unique way and to relay this processed signal to a specific set of targets in the brain. My students and I are working to understand the meaning of this parallel organization through electrophysiological and anatomical studies. We record from light-responsive ganglion cells in vitro using the whole-cell patch method. This allows us to correlate directly the visual response properties, intrinsic electrical behavior, synaptic pharmacology, dendritic morphology and axonal projections of single neurons. Other methods used in the lab include neuroanatomical tracing techniques, single-unit recording and immunohistochemistry. We seek to specify the total number of ganglion cell types, the distinguishing characteristics of each type, and the intraretinal mechanisms (structural, electrical, and synaptic) that shape their stimulus selectivities. Recent work in the lab has identified a bizarre new ganglion cell type that is also a photoreceptor, capable of responding to light even when it is synaptically uncoupled from conventional (rod and cone) photoreceptors. These ganglion cells appear to play a key role in resetting the biological clock. It is just this sort of link, between a specific cell type and a well-defined behavioral or perceptual function, that we seek to establish for the full range of ganglion cell types. My research concerns the structural and functional organization of retinal ganglion cells, the output cells of the retina whose axons make up the optic nerve. Ganglion cells exhibit great diversity both in their morphology and in their responses to light stimuli. On this basis, they are divisible into a large number of types (>15). Each ganglion-cell type appears to send its outputs to a specific set of central visual nuclei. This suggests that ganglion cell heterogeneity has evolved to provide each visual center in the brain with pre-processed representations of the visual scene tailored to its specific functional requirements. Though the outline of this story has been appreciated for some time, it has received little systematic exploration. My laboratory is addressing in parallel three sets of related questions: 1) How many types of ganglion cells are there in a typical mammalian retina and what are their structural and functional characteristics? 2) What combination of synaptic networks and intrinsic membrane properties are responsible for the characteristic light responses of individual types? 3) What do the functional specializations of individual classes contribute to perceptual function or to visually mediated behavior? To pursue these questions, we label retinal ganglion cells by retrograde transport from the brain; analyze in vitro their light responses, intrinsic membrane properties and synaptic pharmacology using the whole-cell patch clamp method; and reveal their morphology with intracellular dyes. Recently, we have discovered a novel ganglion cell in rat retina that is intrinsically photosensitive. These ganglion cells exhibit robust light responses even when all influences from classical photoreceptors (rods and cones) are blocked, either by applying pharmacological agents or by dissociating the ganglion cell from the retina. These photosensitive ganglion cells seem likely to serve as photoreceptors for the photic synchronization of circadian rhythms, the mechanism that allows us to overcome jet lag. They project to the circadian pacemaker of the brain, the suprachiasmatic nucleus of the hypothalamus. Their temporal kinetics, threshold, dynamic range, and spectral tuning all match known properties of the synchronization or "entrainment" mechanism. These photosensitive ganglion cells innervate various other brain targets, such as the midbrain pupillary control center, and apparently contribute to a host of behavioral responses to ambient lighting conditions. These findings help to explain why circadian and pupillary light responses persist in mammals, including humans, with profound disruption of rod and cone function. Ongoing experiments are designed to elucidate the phototransduction mechanism, including the identity of the photopigment and the nature of downstream signaling pathways. In other studies, we seek to provide a more detailed characterization of the photic responsiveness and both morphological and functional evidence concerning possible interactions with conventional rod- and cone-driven retinal circuits. These studies are of potential value in understanding and designing appropriate therapies for jet lag, the negative consequences of shift work, and seasonal affective disorder.
The evolution and development of visual complexity: insights from stomatopod visual anatomy, physiology, behavior, and molecules
Bioluminescence, which is rare on land, is extremely common in the deep sea, being found in 80% of the animals living between 200 and 1000 m. These animals rely on bioluminescence for communication, feeding, and/or defense, so the generation and detection of light is essential to their survival. Our present knowledge of this phenomenon has been limited due to the difficulty in bringing up live deep-sea animals to the surface, and the lack of proper techniques needed to study this complex system. However, new genomic techniques are now available, and a team with extensive experience in deep-sea biology, vision, and genomics has been assembled to lead this project. This project is aimed to study three questions 1) What are the evolutionary patterns of different types of bioluminescence in deep-sea shrimp? 2) How are deep-sea organisms’ eyes adapted to detect bioluminescence? 3) Can bioluminescent organs (called photophores) detect light in addition to emitting light? Findings from this study will provide valuable insight into a complex system vital to communication, defense, camouflage, and species recognition. This study will bring monumental contributions to the fields of deep sea and evolutionary biology, and immediately improve our understanding of bioluminescence and light detection in the marine environment. In addition to scientific advancement, this project will reach K-college aged students through the development and dissemination of educational tools, a series of molecular and organismal-based workshops, museum exhibits, public seminars, and biodiversity initiatives.
A talk about consciousness
Prof. Marcello Massimini will give a talk addressed to the Humanitas University Undergraduate Neurological Society students and Humanitas Neuro Center members about consciousness and his groundbreaking studies on this topic. Prof. Maurizio Cecconi and Dr. Villa will then give their clinical point of view as neurointensivists on the pathologic states of consciousness.
ISYNC: International SynAGE Conference on Healthy Ageing
The SynAGE committee members are thrilled to host ISYNC, the International SynAGE conference on healthy ageing, on 28-30 March 2022 in Magdeburg, Germany. This conference has been entirely organised from young scientists of the SynAGE research training group RTG 2413 (www.synage.de) and represents a unique occasion for researchers from all over the world to bring together and join great talks and sessions with us and our guests. A constantly updated list of our speakers can be found on the conference webpage: www.isync-md.de. During the conference, attendees will have access to a range of symposia which will deal with Glia, Biomarkers and Immunoresponses during ageing to neurodegeneration brain integrity and cognitive function in health and diseases. Moreover, the conference will offer social events especially for young researchers and the possibility to network together in a beautiful and suggestive location where our conference will take place: the Johanniskirche. The event will be happening in person, but due to the current pandemic situation and restrictions we are planning the conference as a hybrid event with lots of technical support to ensure that every participant can follow the talks and take part in the scientific discussions. The registration to our ISYNC conference is free of charge. However, the number of people attending the conference in person is restricted to 100. Afterwards, registrations will be accepted for joining virtually only. The registration is open until 15.02.2022. Especially for PhD and MD Students: Check our available Travel Grants, Poster Prize and SynAGE Award Dinner: https://www.isync-md.de/index.php/phd-md-specials/ If you need any further information don’t hesitate to contact us via email: contact@synage.de. We are looking forward to meet you in 2022 in Magdeburg to discuss about our research and ideas and bless together science. Your ISYNC organization Committee
Differences between beginning and advanced students using specific analogical stimuli during design-by-analogy
Studies reported the effects of different types and different levels of abstraction of analogical stimuli on designers. However, specific, single visual analogical stimuli on the effects of designers have not been reported. We define this type of stimuli as specific analogical stimuli. We used the extended linkography method to analyze the facilitating and limiting effects of specific analogical stimuli and free association analogical stimuli (nonspecific analogical stimuli) on the students' creativity at different design levels. Through an empirical study, we explored the differences in the effects of specific analogy stimuli on the students at different design levels. It clarifies the use of analogical stimuli in design and the teaching of analogical design methods in design education.
Psychedelics and related plasticity-promoting neurotherapeutics
Dr. David E. Olson will give a talk addressed to the Humanitas University Undergraduate Neurological Society students, focusing on his work on psychedelic drugs and related plasticity-promoting neurotherapeutics. The event will begin with a general and brief introduction to the topic by the HUUNS members.
Interdisciplinary College
The Interdisciplinary College is an annual spring school which offers a dense state-of-the-art course program in neurobiology, neural computation, cognitive science/psychology, artificial intelligence, machine learning, robotics and philosophy. It is aimed at students, postgraduates and researchers from academia and industry. This year's focus theme "Flexibility" covers (but not be limited to) the nervous system, the mind, communication, and AI & robotics. All this will be packed into a rich, interdisciplinary program of single- and multi-lecture courses, and less traditional formats.
NMC4 Short Talk: What can 140,000 Reaches Tell Us About Demographic Contributions to Visuomotor Adaptation?
Motor learning is typically assessed in the lab, affording a high degree of control over the task environment. However, this level of control often comes at the cost of smaller sample sizes and a homogenous pool of participants (e.g. college students). To address this, we have designed a web-based motor learning experiment, making it possible to reach a larger, more diverse set of participants. As a proof-of-concept, we collected 1,581 participants completing a visuomotor rotation task, where participants controlled a visual cursor on the screen with their mouse and trackpad. Motor learning was indexed by how fast participants were able to compensate for a 45° rotation imposed between the cursor and their actual movement. Using a cross-validated LASSO regression, we found that motor learning varied significantly with the participant’s age and sex, and also strongly correlated with the location of the target, visual acuity, and satisfaction with the experiment. In contrast, participants' mouse and browser type were features eliminated by the model, indicating that motor performance was not influenced by variations in computer hardware and software. Together, this proof-of-concept study demonstrates how large datasets can generate important insights into the factors underlying motor learning.
NeurotechRI Kickoff Meeting
The digital kickoff of NeurotechRI will take place on the 26th from 13:00 to 16:00 (CET). Come and join us as we discuss our plans for the Graduate School and our research and innovation roadmap! The programme can be downloaded here. Don’t miss out on our Board of Governors presentation of the project and the synergies with NeurotechEU, meet with our keynote speakers from the European Research Executive Agency: Mr Stijn Delaure (DG R&I, Unit A3 “R&I Actors and Research Careers”) and Ms Marta Truco Calbet (DG R&I, Unit C.4 "Reforming European R&I and Research Infrastructures''). Last but not least, the day will finish with a roundtable discussion organised by our students society. The roundtable will be an open space and an opportunity for all students to discuss their needs in education. Registration is open: www.crowdcast.io/e/neurotechri-kickoff
Can connectomics help us understand the brain and sustain the revolution in AI?
3 short talks and a panel discussion on the topic of "Can connectomics help us understand the brain and sustain the revolution in AI?" Expect beautiful connectomics data, provocative dreaming, realistic critiques and everything in between. Students & post-docs, stay on to meet our 3 amazing speakers. Moderator: Dr Greg Jefferis https://www2.mrc-lmb.cam.ac.uk/group-leaders/h-to-m/gregory-jefferis/
3 Minutes Thesis Competition: Pre-selection event
On behalf of NeurotechEU, we are pleased to invite you to participate in the Summit 2021 pre-selection event on October 23, 2021. The event will be held online via the Platform Crowdcast.io, and it is going to be organized by NeurotechEU-The European University of Brain and Technology. Students from all over NeurotechEU have the chance to present their research (bachelor’s thesis, Master’s thesis, PhD, post-doc…) following the methodology of three minutes thesis (3MT from the University of Queensland): https://threeminutethesis.uq.edu.au/resources/3mt-competitor-guide. There will be one session per university and at the end of it, two semi-finalists will be selected from each university. They will compete in the Summit 2021 on November 22nd. There will be prizes for the winners who will be selected by voting of the audience.
Gap Junction Coupling between Photoreceptors
Simply put, the goal of my research is to describe the neuronal circuitry of the retina. The organization of the mammalian retina is certainly complex but it is not chaotic. Although there are many cell types, most adhere to a relatively constant morphology and they are distributed in non-random mosaics. Furthermore, each cell type ramifies at a characteristic depth in the retina and makes a stereotyped set of synaptic connections. In other words, these neurons form a series of local circuits across the retina. The next step is to identify the simplest and commonest of these repeating neural circuits. They are the building blocks of retinal function. If we think of it in this way, the retina is a fabulous model for the rest of the CNS. We are interested in identifying specific circuits and cell types that support the different functions of the retina. For example, there appear to be specific pathways for rod and cone mediated vision. Rods are used under low light conditions and rod circuitry is specialized for high sensitivity when photons are scarce (when you’re out camping, starlight). The hallmark of the rod-mediated system is monochromatic vision. In contrast, the cone circuits are specialized for high acuity and color vision under relatively bright or daylight conditions. Individual neurons may be filled with fluorescent dyes under visual control. This is achieved by impaling the cell with a glass microelectrode using a 3D micromanipulator. We are also interested in the diffusion of dye through coupled neuronal networks in the retina. The dye filled cells are also combined with antibody labeling to reveal neuronal connections and circuits. This triple-labeled material may be viewed and reconstructed in 3 dimensions by multi-channel confocal microscopy. We have our own confocal microscope facility in the department and timeslots are available to students in my lab.
PiVR: An affordable and versatile closed-loop platform to study unrestrained sensorimotor behavior
PiVR is a system that allows experimenters to immerse small animals into virtual realities. The system tracks the position of the animal and presents light stimulation according to predefined rules, thus creating a virtual landscape in which the animal can behave. By using optogenetics, we have used PiVR to present fruit fly larvae with virtual olfactory realities, adult fruit flies with a virtual gustatory reality and zebrafish larvae with a virtual light gradient. PiVR operates at high temporal resolution (70Hz) with low latencies (<30 milliseconds) while being affordable (<US$500) and easy to build (<6 hours). Through extensive documentation (www.PiVR.org), this tool was designed to be accessible to a wide public, from high school students to professional researchers studying systems neuroscience in academia.
Enhanced perception and cognition in deaf sign language users: EEG and behavioral evidence
In this talk, Dr. Quandt will share results from behavioral and cognitive neuroscience studies from the past few years of her work in the Action & Brain Lab, an EEG lab at Gallaudet University, the world's premiere university for deaf and hard-of-hearing students. These results will center upon the question of how extensive knowledge of signed language changes, and in some cases enhances, people's perception and cognition. Evidence for this effect comes from studies of human biological motion using point light displays, self-report, and studies of action perception. Dr. Quandt will also discuss some of the lab's efforts in designing and testing a virtual reality environment in which users can learn American Sign Language from signing avatars (virtual humans).
Careers in neuroscience (and beyond!)
Join us to hear about degrees and careers in neuroscience, what it’s like to be a neuroscientist, the wide range of career options open to you after a neuroscience degree, first-hand examples of career paths in neuroscience, and some tips and thoughts to help you in your own careers. This free and friendly webinar will give you the chance to ask questions from people with different experiences in neuroscience: - Emma Soopramanien, the BNA Committee Representative for Students and Early Career Researchers – Emma has just completed her undergraduate course in neuroscience, and will be hosting the webinar. - Professor Anthony Isles, BNA Trustee – Anthony is a professor at Cardiff University, where he researches epigenetic mechanisms of brain and behaviour and how they contribute to neurodevelopmental and neuropsychiatric disorders, as well as teaching undergraduate and postgraduate students. He will talk about how he came to be a neuroscientist researcher and ways into neuroscience. - Dr Anne Cooke, BNA Chief Executive – Anne studied physiology and neuroscience at university and carried out research into neuronal communication, before then following a career path with roles in academia and industry, and now as CE at the BNA. Anne will describe her own career in neuroscience, as well as some of the many other options open to you after a neuroscience degree.
Imperial Neurotechnology 2021 - Annual Research Symposium
A diverse mix of neurotechnology talks from academic and industry colleagues plus presentations from our MRes Neurotechnology students. Visit our event page to find out more and register now!
Lessons from the credibility revolution – social thermoregulation as a case study
The goal of this talk is to first provide a realization of why the replication crisis is omnipresent and then point to several tools via which the listener can improve their own work. To do so, I will go through our own work on social thermoregulation, point out why I thought changes were necessary, discuss which shortcomings we have in our own work, which measures we have taken to reduce those shortcomings, which tools we have relied on to do so, and which steps I believe we still need to make. Specifically, I will go through the following points: Major replication failures and data fabrication in the field of psychology; Replication failures of social thermoregulation studies; Realization that many of our studies were underpowered; Realization that many of our studies were very narrow in scope (i.e., in undergraduate students and mostly in EU/US); Realization that a lot of our measures were not independently validated. I will show these for our own work (but will also show why, via a meta-analysis, we have enough confidence to proceed with social thermoregulation research). Throughout the talk I will point you to the following tools that facilitate our work: Templates for exploratory and confirmatory research and for meta-analyses (developed for our work, but easily adaptable for other programs). I will also show you how to fork our templates; A lab philosophy; A research milestones sheet for collaborations and overviews; Excel sheet for contributorship; A tutorial for exploratory research; I would recommend listeners to read through this chapter before the talk (I will repeat a lot of that work, but I will go into greater depth). own work. To do so, I will go through our own work on social thermoregulation, point out why I thought changes were necessary, discuss which shortcomings we have in our own work, which measures we have taken to reduce those shortcomings, which tools we have relied on to do so, and which steps I believe we still need to make.
Hughlings Jackson Lecture: Making Progress in Progressive MS – the Ultimate Challenge!
On April 22, 2021, Dr. Alan J Thompson of the University College London and the UCL Institute of Neurology, London, UK will deliver the Hughlings Jackson Lecture entitled, “Making Progress in Progressive MS – the Ultimate Challenge!” Established in 1935, the Hughlings Jackson Lecture is The Neuro’s premier scientific lecture. It honors the legacy of British neurologist John Hughlings Jackson (1835-1911) who pioneered the development of neurology as a medical specialty. Talk Abstract : The international focus on progressive MS, driven by the Progressive MS Alliance amongst others, together with recent encouraging results from clinical trials have raised the profile and emphasised the importance of understanding, treating and ultimately preventing progression in MS. Effective treatment for Progressive MS is now regarded as the single most important issue facing the MS community. There are several important challenges to developing new treatments for progressive MS. Fundamental to any development in treatment is a better understanding of the mechanisms of tissue injury underpinning progression which will in turn allow the identification of new targets against which treatments can be directed. There are additional complications in determining when progression actually starts, determining the impact of aging and defining the progressive clinical phenotypes – an area which has become increasingly complex in recent months. Evaluating potential new treatments in progressive MS also poses particular challenges including trial design and the selection of appropriate clinical and imaging outcomes - in particular, identifying an imaging biomarker for phase II trials of progressive MS. Despite these challenges, considerable progress is being made in developing new treatments targeting the innate immune system and exploring neuroprotective strategies. Further advances are being driven by a number of international networks, funded by the Progressive MS Alliance. Overall we are seeing encouraging progress as a result of co-ordinated global collaboration which offers real possibilities for truly effective treatment of progression.
A discussion on the necessity for Open Source Hardware in neuroscience research
Research tools are paramount for scientific development, they enable researchers to observe and manipulate natural phenomena, learn their principles, make predictions and develop new technologies, treatments and improve living standards. Due to their costs and the geographical distribution of manufacturing companies access to them is not widely available, hindering the pace of research, the ability of many communities to contribute to science and education and reap its benefits. One possible solution for this issue is to create research tools under the open source ethos, where all documentation about them (including their designs, building and operating instructions) are made freely available. Dubbed Open Science Hardware (OSH), this production method follows the established and successful principles of open source software and brings many advantages over traditional creation methods such as: economic savings (see Pearce 2020 for potential economic savings in developing open source research tools), distributed manufacturing, repairability, and higher customizability. This development method has been greatly facilitated by recent technological developments in fast prototyping tools, Internet infrastructure, documentation platforms and lower costs of electronic off-the-shelf components. Taken together these benefits have the potential to make research more inclusive, equitable, distributed and most importantly, more reliable and reproducible, as - 1) researchers can know their tools inner workings in minute detail - 2) they can calibrate their tools before every experiment and having them running in optimal condition everytime - 3) given their lower price point, a)students can be trained/taught with hands on classes, b) several copies of the same instrument can be built leading to a parallelization of data collection and the creation of more robust datasets. - 4) Labs across the world can share the exact same type of instruments and create collaborative projects with standardized data collection and sharing.
Students to Professors: Inspiring NeurotechEU Women
The NeurotechEU student councils invites you to a special event on the occasion of the International Women's Day. 15 different speakers from very different backgrounds, seniority and expertise will share their experience on women in science, from students, to professeurs, to researchers, to the European Commission, discover their very unique insights.
European University for Brain and Technology Virtual Opening
The European University for Brain and Technology, NeurotechEU, is opening its doors on the 16th of December. From health & healthcare to learning & education, Neuroscience has a key role in addressing some of the most pressing challenges that we face in Europe today. Whether the challenge is the translation of fundamental research to advance the state of the art in prevention, diagnosis or treatment of brain disorders or explaining the complex interactions between the brain, individuals and their environments to design novel practices in cities, schools, hospitals, or companies, brain research is already providing solutions for society at large. There has never been a branch of study that is as inter- and multi-disciplinary as Neuroscience. From the humanities, social sciences and law to natural sciences, engineering and mathematics all traditional disciplines in modern universities have an interest in brain and behaviour as a subject matter. Neuroscience has a great promise to become an applied science, to provide brain-centred or brain-inspired solutions that could benefit the society and kindle a new economy in Europe. The European University of Brain and Technology (NeurotechEU) aims to be the backbone of this new vision by bringing together eight leading universities, 250+ partner research institutions, companies, societal stakeholders, cities, and non-governmental organizations to shape education and training for all segments of society and in all regions of Europe. We will educate students across all levels (bachelor’s, master’s, doctoral as well as life-long learners) and train the next generation multidisciplinary scientists, scholars and graduates, provide them direct access to cutting-edge infrastructure for fundamental, translational and applied research to help Europe address this unmet challenge.
Panel discussion: Practical advice for reproducibility in neuroscience
This virtual, interactive panel on reproducibility in neuroscience will focus on practical advice that researchers at all career stages could implement to improve the reproducibility of their work, from power analyses and pre-registering reports to selecting statistical tests and data sharing. The event will comprise introductions of our speakers and how they came to be advocates for reproducibility in science, followed by a 25-minute discussion on reproducibility, including practical advice for researchers on how to improve their data collection, analysis, and reporting, and then 25 minutes of audience Q&A. In total, the event will last one hour and 15 minutes. Afterwards, some of the speakers will join us for an informal chat and Q&A reserved only for students/postdocs.
Neurotoxicity is a major health problem in Africa: focus on Parkinson's / Parkinsonism
Parkinson's disease (PD) is the second most present neurodegenerative disease in the world after Alzheimer's. It is due to the progressive and irreversible loss of dopaminergic neurons of the substantia nigra Pars Compacta. Alpha synuclein deposits and the appearance of Lewi bodies are systematically associated with it. PD is characterized by four cardinal motor symptoms: bradykinesia / akinesia, rigidity, postural instability and tremors at rest. These symptoms appear when 80% of the dopaminergic endings disappear in the striatum. According to Braak's theory, non-motor symptoms appear much earlier and this is particularly the case with anxiety, depression, anhedonia, and sleep disturbances. In 90 to 95% of cases, the causes of the appearance of the disease remain unknown, but polluting toxic molecules are incriminated more and more. In Africa, neurodegenerative diseases of the Parkinson's type are increasingly present and a parallel seems to exist between the increase in cases and the presence of toxic and polluting products such as metals. My Web conference will focus on this aspect, i.e. present experimental arguments which reinforce the hypothesis of the incrimination of these pollutants in the incidence of Parkinson's disease and / or Parkinsonism. Among the lines of research that we have developed in my laboratory in Rabat, Morocco, I have chosen this one knowing that many of our PhD students and IBRO Alumni are working or trying to develop scientific research on neurotoxicity in correlation with pathologies of the brain.
Students´Poster Presentation I Evaluation of the effect of different types of physical training on cognitive stress caused by the Stroop test, using Backyard Brain technology
Neuroscience tools for the 99%: On the low-fi development of high-tech lab gear for hands-on neuroscience labs and exploratory research
The public has a fascination with the brain, but little attention is given to neuroscience education prior to graduate studies in brain-related fields. One reason may be the lack of low cost and engaging teaching materials. To address this, we have developed a suite of open-source tools which are appropriate for amateurs and for use in high school, undergraduate, and graduate level educational and research programs. This lecture will provide an overview of our mission to re-engineer research-grade lab equipment using first principles and will highlight basic principles of neuroscience in a "DIY" fashion: neurophysiology, functional electrical stimulation, micro-stimulation effect on animal behavior, neuropharmacology, even neuroprosthesis and optogenetics! Finally, with faculty academic positions becoming a scarce resource, I will discuss an alternative academic career path: entrepreneurship. It is possible to be an academic, do research, publish papers, present at conferences and train students all outside the traditional university setting. I will close by discussing my career path from graduate student to PI/CEO of a startup neuroscience company.
MidsummerBrains - computational neuroscience from my point of view
Computational neuroscience is a highly interdisciplinary field ranging from mathematics, physics and engineering to biology, medicine and psychology. Interdisciplinary collaborations have resulted in many groundbreaking innovations both in the research and application. The basis for successful collaborations is the ability to communicate across disciplines: What projects are the others working on? Which techniques and methods are they using? How is data collected, used and stored? In this webinar series, several experts describe their view on computational neuroscience in theory and application, and share experiences they had with interdisciplinary projects. This webinar is open for all interested students and researchers. If you are interested to participate live, please send a short message to smartstart@fz-juelich.de Please note, these lectures will be recorded for subsequent publishing as online lecture material.
MidsummerBrains - computational neuroscience from my point of view
Computational neuroscience is a highly interdisciplinary field ranging from mathematics, physics and engineering to biology, medicine and psychology. Interdisciplinary collaborations have resulted in many groundbreaking innovations both in the research and application. The basis for successful collaborations is the ability to communicate across disciplines: What projects are the others working on? Which techniques and methods are they using? How is data collected, used and stored? In this webinar series, several experts describe their view on computational neuroscience in theory and application, and share experiences they had with interdisciplinary projects. This webinar is open for all interested students and researchers. If you are interested to participate live, please send a short message to smartstart@fz-juelich.de Please note, these lectures will be recorded for subsequent publishing as online lecture material.
MidsummerBrains - computational neuroscience from my point of view
Computational neuroscience is a highly interdisciplinary field ranging from mathematics, physics and engineering to biology, medicine and psychology. Interdisciplinary collaborations have resulted in many groundbreaking innovations both in the research and application. The basis for successful collaborations is the ability to communicate across disciplines: What projects are the others working on? Which techniques and methods are they using? How is data collected, used and stored? In this webinar series, several experts describe their view on computational neuroscience in theory and application, and share experiences they had with interdisciplinary projects. This webinar is open for all interested students and researchers. If you are interested to participate live, please send a short message to smartstart@fz-juelich.de Please note, these lectures will be recorded for subsequent publishing as online lecture material.
MidsummerBrains - computational neuroscience from my point of view
Computational neuroscience is a highly interdisciplinary field ranging from mathematics, physics and engineering to biology, medicine and psychology. Interdisciplinary collaborations have resulted in many groundbreaking innovations both in the research and application. The basis for successful collaborations is the ability to communicate across disciplines: What projects are the others working on? Which techniques and methods are they using? How is data collected, used and stored? In this webinar series, several experts describe their view on computational neuroscience in theory and application, and share experiences they had with interdisciplinary projects. This webinar is open for all interested students and researchers. If you are interested to participate live, please send a short message to smartstart@fz-juelich.de Please note, these lectures will be recorded for subsequent publishing as online lecture material.
MidsummerBrains - computational neuroscience from my point of view
Computational neuroscience is a highly interdisciplinary field ranging from mathematics, physics and engineering to biology, medicine and psychology. Interdisciplinary collaborations have resulted in many groundbreaking innovations both in the research and application. The basis for successful collaborations is the ability to communicate across disciplines: What projects are the others working on? Which techniques and methods are they using? How is data collected, used and stored? In this webinar series, several experts describe their view on computational neuroscience in theory and application, and share experiences they had with interdisciplinary projects. This webinar is open for all interested students and researchers. If you are interested to participate live, please send a short message to smartstart@fz-juelich.de Please note, these lectures will be recorded for subsequent publishing as online lecture material.
MidsummerBrains - computational neuroscience from my point of view
Computational neuroscience is a highly interdisciplinary field ranging from mathematics, physics and engineering to biology, medicine and psychology. Interdisciplinary collaborations have resulted in many groundbreaking innovations both in the research and application. The basis for successful collaborations is the ability to communicate across disciplines: What projects are the others working on? Which techniques and methods are they using? How is data collected, used and stored? In this webinar series, several experts describe their view on computational neuroscience in theory and application, and share experiences they had with interdisciplinary projects. This webinar is open for all interested students and researchers. If you are interested to participate live, please send a short message to smartstart@fz-juelich.de Please note, these lectures will be recorded for subsequent publishing as online lecture material.
Assessing the effects of mindful breathing on learning and emotions in primary school students
FENS Forum 2024
Assessment of students' quality of life and attentional stability in emergency situations
FENS Forum 2024
The association of emotion dysregulation in the occurrence of depression and suicidal behaviors in a sub-Saharan sample of university students
FENS Forum 2024
Larks or owls? That is the question – Chronotype, sleep, and mental health of international students
FENS Forum 2024
Neurophysiological correlates of cognitive load in online learning for neurotypical and neurodivergent students
FENS Forum 2024