Substance Use Disorders
substance use disorders
Currents of Hope: how noninvasive brain stimulation is reshaping modern psychiatric care; Adapting to diversity: Integrating variability in brain structure and function into personalized / closed-loop non-invasive brain stimulation for substance use disorders
In March we will focus on TMS and host Ghazaleh Soleimani and Colleen Hanlon. The talks will talk place on Thursday, March 28th at noon ET – please be aware that this means 5PM CET since Boston already switched to summer time! Ghazaleh Soleimani, PhD, is a postdoctoral fellow in Dr Hamed Ekhtiari’s lab at the University of Minnesota. She is also the executive director of the International Network of tES/TMS for Addiction Medicine (INTAM). She will discuss “Adapting to diversity: Integrating variability in brain structure and function into personalized / closed-loop non-invasive brain stimulation for substance use disorders”. Colleen Hanlon, PhD, currently serves as a Vice President of Medical Affairs for BrainsWay, a company specializing in medical devices for mental health, including TMS. Colleen previously worked at the Medical University of South Carolina and Wake Forest School of Medicine. She received the International Brain Stimulation Early Career Award in 2023. She will discuss “Currents of Hope: how noninvasive brain stimulation is reshaping modern psychiatric care”. As always, we will also get a glimpse at the “Person behind the science”. Please register va talks.stimulatingbrains.org to receive the (free) Zoom link, subscribe to our newsletter, or follow us on Twitter/X for further updates!
Dissecting the role of accumbal D1 and D2 medium spiny neurons in information encoding
Nearly all motivated behaviors require the ability to associate outcomes with specific actions and make adaptive decisions about future behavior. The nucleus accumbens (NAc) is integrally involved in these processes. The NAc is a heterogeneous population primarily composed of D1 and D2 medium spiny projection (MSN) neurons that are thought to have opposed roles in behavior, with D1 MSNs promoting reward and D2 MSNs promoting aversion. Here we examined what types of information are encoded by the D1 and D2 MSNs using optogenetics, fiber photometry, and cellular resolution calcium imaging. First, we showed that mice responded for optical self-stimulation of both cell types, suggesting D2-MSN activation is not inherently aversive. Next, we recorded population and single cell activity patterns of D1 and D2 MSNs during reinforcement as well as Pavlovian learning paradigms that allow dissociation of stimulus value, outcome, cue learning, and action. We demonstrated that D1 MSNs respond to the presence and intensity of unconditioned stimuli – regardless of value. Conversely, D2 MSNs responded to the prediction of these outcomes during specific cues. Overall, these results provide foundational evidence for the discrete aspects of information that are encoded within the NAc D1 and D2 MSN populations. These results will significantly enhance our understanding of the involvement of the NAc MSNs in learning and memory as well as how these neurons contribute to the development and maintenance of substance use disorders.
Sex, drugs, and bad choices: using rodent models to understand decision making
Nearly every aspect of life involves decisions between options that differ in both their expected rewards and the potential costs (such as delay to reward delivery or risk of harm) that accompany those rewards. The ability to choose adaptively when faced with such decisions is critical for well-being and overall quality of life. In neuropsychiatric conditions such as substance use disorders, however, decision making is often compromised, which can prolong and exacerbate their severity and co-morbidities. In this seminar, Dr. Setlow will discuss research in rodent models investigating behavioral and biological mechanisms of cost-benefit decision making. In particular, he will focus on factors (including sex) that contribute to differences in cost-benefit decision making across the population, how variability in decision making is related to substance use, and how substance use can produce long-lasting changes in decision preference.
Schizophrenia and Substance Use Disorders: Cracking the Chicken-or-Egg Question
Although substance use disorders (SUDs) occur commonly in patients with schizophrenia and significantly worsen their clinical course, the neurobiological basis of SUDs in schizophrenia is not well understood. Therefore, there is a critical need to understand the mechanisms underlying SUDs in schizophrenia in order to identify potential targets for therapeutic intervention. Since drug use usually begins in adolescence, it is also important to understand the long-term effects of adolescent drug exposure on schizophrenia- and reward- related behaviors and circuitry. This talk will combine pharmacological, behavioral, electrophysiologic (local field potential recordings) and pre-clinical magnetic resonance imaging (resting-state functional connectivity and magnetic resonance spectroscopy) approaches to study these topics with an eye toward developing better treatment approaches.