← Back

Symbolic Ai

Topic spotlight
TopicWorld Wide

Symbolic Ai

Discover seminars, jobs, and research tagged with Symbolic Ai across World Wide.
4 curated items3 Positions1 Seminar
Updated 1 day ago
4 items · Symbolic Ai
4 results
PositionArtificial Intelligence

Dr. Robert Legenstein

Graz University of Technology
Austria
Dec 5, 2025

For the recently established Cluster of Excellence CoE Bilateral Artificial Intelligence (BILAI), funded by the Austrian Science Fund (FWF), we are looking for more than 50 PhD students and 10 Post-Doc researchers (m/f/d) to join our team at one of the six leading research institutions across Austria. In BILAI, major Austrian players in Artificial Intelligence (AI) are teaming up to work towards Broad AI. As opposed to Narrow AI, which is characterized by task-specific skills, Broad AI seeks to address a wide array of problems, rather than being limited to a single task or domain. To develop its foundations, BILAI employs a Bilateral AI approach, effectively combining sub-symbolic AI (neural networks and machine learning) with symbolic AI (logic, knowledge representation, and reasoning) in various ways. Harnessing the full potential of both symbolic and sub-symbolic approaches can open new avenues for AI, enhancing its ability to solve novel problems, adapt to diverse environments, improve reasoning skills, and increase efficiency in computation and data use. These key features enable a broad range of applications for Broad AI, from drug development and medicine to planning and scheduling, autonomous traffic management, and recommendation systems. Prioritizing fairness, transparency, and explainability, the development of Broad AI is crucial for addressing ethical concerns and ensuring a positive impact on society. The research team is committed to cross-disciplinary work in order to provide theory and models for future AI and deployment to applications.

PositionArtificial Intelligence

Dr. Robert Legenstein

Graz University of Technology
Austria
Dec 5, 2025

We are seeking highly motivated and talented PostDoc and PhD-candidates to join our dynamic research team for combining symbolic and sub-symbolic AI. It offers a unique opportunity to create a new level of artificial intelligence. The successful candidates will conduct research in collaboration with all partner institutes JKU, AAU Klagenfurt, ISTA, TU Graz, TU Vienna, and WU Vienna.

SeminarNeuroscienceRecording

Analogical Reasoning with Neuro-Symbolic AI

Hiroshi Honda
Keio University
Feb 23, 2022

Knowledge discovery with computers requires a huge amount of search. Analogical reasoning is effective for efficient knowledge discovery. Therefore, we proposed analogical reasoning systems based on first-order predicate logic using Neuro-Symbolic AI. Neuro-Symbolic AI is a combination of Symbolic AI and artificial neural networks and has features that are easy for human interpretation and robust against data ambiguity and errors. We have implemented analogical reasoning systems by Neuro-symbolic AI models with word embedding which can represent similarity between words. Using the proposed systems, we efficiently extracted unknown rules from knowledge bases described in Prolog. The proposed method is the first case of analogical reasoning based on the first-order predicate logic using deep learning.