Synapse
synapse
Prof Rosa Chiara Paolicelli
A lab technician position is available in the group of Rosa Paolicelli at the Department of Biomedical Sciences, University of Lausanne. A major focus of the lab is understanding how microglia-neuron communication controls the formation, elimination, and plasticity of synapses, and how this can affect neuronal function and complex behaviors. Your Tasks: Preparation of primary cultures and organotypic hippocampal slices; genotyping, mouse intracardiac perfusion and brain dissection; experience with behavioral paradigms. Active involvement in research is possible. Contract length: 1 year, with possibility of renewal The University of Lausanne is a higher teaching and research institution composed of seven faculties where approximately 15,000 students and nearly 5,000 collaborators, professors, and researchers work and study. Ideally situated along the lake of Geneva, near Lausanne's city center, its campus brings together over 120 nationalities. Highly motivated candidates are encouraged to apply by sending their CV, along with a motivation letter, and names of three references, to: rosachiara.paolicelli@unil.ch Deadline for applying: until the position is filled.
Albert Cardona
To work within the group of Dr Albert Cardona at the MRC Laboratory of Molecular Biology (LMB), within a programme aimed at whole brain connectomics from volume electron microscopy. Specifically, we are seeking to recruit a data scientist with at least a year of experience with densely labelled volume electron microscopy data of nervous tissue. In particular, the candidate will be experienced in developing and applying machine learning frameworks for synapse detection and segmentation, neuron segmentation and proofreading, and quantification of neuronal structures in nanometre-resolution data sets imaged with volume electron microscopy, for the purpose of mapping neuronal wiring diagrams from volume electron microscopy. The ideal candidate will have an academic track record in the form of authored publications in the arXiv, computer vision conferences, and scientific journals, as well as accessible source code repositories demonstrating past work. The ideal candidate will have experience with the python programming language (at version 3+), and in the use of machine learning libraries with python bindings such as keras or pytorch, and has written code available in accessible source code repositories where it can be evaluated by third parties, and has deployed their code to both CPU and GPU clusters, and single servers with multiple GPUs. The ideal candidate has applied all of the above towards the generation of over-segmentations of neuronal structures, and is familiar with approaches for post-processing (proofreading) to automatically agglomerate over-segmented neuron fragments into full arbors, using biologically grounded approaches such as microtobule or endoplasmatic reticulum segmentation for validation.
Prof. Joris de Wit
This is a collaborative international project with the laboratory of Anthony Holtmaat (University of Geneva, Switzerland), funded by the Weave cross-European initiative. The project is at the interface of the expertise of the De Wit lab (molecular mechanisms of synaptic connectivity) and of the Holtmaat lab (synaptic integration of sensory input and context in cortical circuits). The project will unravel molecular mechanisms of synaptic specificity in cortical and thalamocortical circuits. Our recent work has shown that higher-order thalamocortical inputs and cortical inputs to pyramidal neurons in the somatosensory cortex display striking differences in their synaptic properties, even when intermingled on the same cortical dendrite. This project will explore the molecular mechanisms that mediate this specificity and test how these regulate structure and function of higher-order thalamocortical inputs in cortical circuits. The applicant will use a broad array of technologies including super-resolution imaging, CRISPR/Cas9 gene editing, viral vectors, conditional knockout mice, optogenetics, and in vivo imaging. The successful candidate will be based in Leuven, Belgium. The two labs will interact regularly via zoom and in-person meetings, and there will be several visits to the Holtmaat lab to transfer skills and exchange results during this project.
How the presynapse forms and functions”
Nervous system function relies on the polarized architecture of neurons, established by directional transport of pre- and postsynaptic cargoes. While delivery of postsynaptic components depends on the secretory pathway, the identity of the membrane compartment(s) that supply presynaptic active zone (AZ) and synaptic vesicle (SV) proteins is largely unknown. I will discuss our recent advances in our understanding of how key components of the presynaptic machinery for neurotransmitter release are transported and assembled focussing on our studies in genome-engineered human induced pluripotent stem cell-derived neurons. Specifically, I will focus on the composition and cell biological identity of the axonal transport vesicles that shuttle key components of neurotransmission to nascent synapses and on machinery for axonal transport and its control by signaling lipids. Our studies identify a crucial mechanism mediating the delivery of SV and active zone proteins to developing synapses and reveal connections to neurological disorders. In the second part of my talk, I will discuss how exocytosis and endocytosis are coupled to maintain presynaptic membrane homeostasis. I will present unpublished data regarding the role of membrane tension in the coupling of exocytosis and endocytosis at synapses. We have identified an endocytic BAR domain protein that is capable of sensing alterations in membrane tension caused by the exocytotic fusion of SVs to initiate compensatory endocytosis to restore plasma membrane area. Interference with this mechanism results in defects in the coupling of presynaptic exocytosis and SV recycling at human synapses.
“Brain theory, what is it or what should it be?”
n the neurosciences the need for some 'overarching' theory is sometimes expressed, but it is not always obvious what is meant by this. One can perhaps agree that in modern science observation and experimentation is normally complemented by 'theory', i.e. the development of theoretical concepts that help guiding and evaluating experiments and measurements. A deeper discussion of 'brain theory' will require the clarification of some further distictions, in particular: theory vs. model and brain research (and its theory) vs. neuroscience. Other questions are: Does a theory require mathematics? Or even differential equations? Today it is often taken for granted that the whole universe including everything in it, for example humans, animals, and plants, can be adequately treated by physics and therefore theoretical physics is the overarching theory. Even if this is the case, it has turned out that in some particular parts of physics (the historical example is thermodynamics) it may be useful to simplify the theory by introducing additional theoretical concepts that can in principle be 'reduced' to more complex descriptions on the 'microscopic' level of basic physical particals and forces. In this sense, brain theory may be regarded as part of theoretical neuroscience, which is inside biophysics and therefore inside physics, or theoretical physics. Still, in neuroscience and brain research, additional concepts are typically used to describe results and help guiding experimentation that are 'outside' physics, beginning with neurons and synapses, names of brain parts and areas, up to concepts like 'learning', 'motivation', 'attention'. Certainly, we do not yet have one theory that includes all these concepts. So 'brain theory' is still in a 'pre-newtonian' state. However, it may still be useful to understand in general the relations between a larger theory and its 'parts', or between microscopic and macroscopic theories, or between theories at different 'levels' of description. This is what I plan to do.
Neurobiological constraints on learning: bug or feature?
Understanding how brains learn requires bridging evidence across scales—from behaviour and neural circuits to cells, synapses, and molecules. In our work, we use computational modelling and data analysis to explore how the physical properties of neurons and neural circuits constrain learning. These include limits imposed by brain wiring, energy availability, molecular noise, and the 3D structure of dendritic spines. In this talk I will describe one such project testing if wiring motifs from fly brain connectomes can improve performance of reservoir computers, a type of recurrent neural network. The hope is that these insights into brain learning will lead to improved learning algorithms for artificial systems.
Motor learning selectively strengthens cortical and striatal synapses of motor engram neurons
Join Us for the Memory Decoding Journal Club! A collaboration of the Carboncopies Foundation and BPF Aspirational Neuroscience. This time, we’re diving into a groundbreaking paper: "Motor learning selectively strengthens cortical and striatal synapses of motor engram neurons
Beyond the synapse: SYNGAP1 in primary and motile cilia
How the presynapse forms and functions
Unifying the mechanisms of hippocampal episodic memory and prefrontal working memory
Remembering events in the past is crucial to intelligent behaviour. Flexible memory retrieval, beyond simple recall, requires a model of how events relate to one another. Two key brain systems are implicated in this process: the hippocampal episodic memory (EM) system and the prefrontal working memory (WM) system. While an understanding of the hippocampal system, from computation to algorithm and representation, is emerging, less is understood about how the prefrontal WM system can give rise to flexible computations beyond simple memory retrieval, and even less is understood about how the two systems relate to each other. Here we develop a mathematical theory relating the algorithms and representations of EM and WM by showing a duality between storing memories in synapses versus neural activity. In doing so, we develop a formal theory of the algorithm and representation of prefrontal WM as structured, and controllable, neural subspaces (termed activity slots). By building models using this formalism, we elucidate the differences, similarities, and trade-offs between the hippocampal and prefrontal algorithms. Lastly, we show that several prefrontal representations in tasks ranging from list learning to cue dependent recall are unified as controllable activity slots. Our results unify frontal and temporal representations of memory, and offer a new basis for understanding the prefrontal representation of WM
Synapse-to-Nucleus Signaling
In the fourth of this year’s Brain Prize webinars, Mike Fainzilber (Weizmann Institute of Science, Israel), Yingxi Lin (UT Southwestern, USA), and Richard Tsien (New York University, USA) will present their work on synapse to nucleus signalling. Each speaker will present for 25 minutes, and the webinar will conclude with an open discussion. The webinar will be moderated by two of the winners of the 2023 Brain Prize, Michael Greenberg and Erin Schuman.
The glutamatergic synapse in mental disorder pathology - translational studies on molecular mechanisms
Consolidation of remote contextual memory in the neocortical memory engram
Recent studies identified memory engram neurons, a neuronal population that is recruited by initial learning and is reactivated during memory recall. Memory engram neurons are connected to one another through memory engram synapses in a distributed network of brain areas. Our central hypothesis is that an associative memory is encoded and consolidated by selective strengthening of engram synapses. We are testing this hypothesis, using a combination of engram cell labeling, optogenetic/chemogenetic, electrophysiological, and virus tracing approaches in rodent models of contextual fear conditioning. In this talk, I will discuss our findings on how synaptic plasticity in memory engram synapses contributes to the acquisition and consolidation of contextual fear memory in a distributed network of the amygdala, hippocampus, and neocortex.
NOTE: DUE TO A CYBER ATTACK OUR UNIVERSITY WEB SYSTEM IS SHUT DOWN - TALK WILL BE RESCHEDULED
The size and structure of the dendritic arbor play important roles in determining how synaptic inputs of neurons are converted to action potential output and how neurons are integrated in the surrounding neuronal network. Accordingly, neurons with aberrant morphology have been associated with neurological disorders. Dysmorphic, enlarged neurons are, for example, a hallmark of focal epileptogenic lesions like focal cortical dysplasia (FCDIIb) and gangliogliomas (GG). However, the regulatory mechanisms governing the development of dendrites are insufficiently understood. The evolutionary conserved Ste20/Hippo kinase pathway has been proposed to play an important role in regulating the formation and maintenance of dendritic architecture. A key element of this pathway, Ste20-like kinase (SLK), regulates cytoskeletal dynamics in non-neuronal cells and is strongly expressed throughout neuronal development. Nevertheless, its function in neurons is unknown. We found that during development of mouse cortical neurons, SLK has a surprisingly specific role for proper elaboration of higher, ≥ 3rd, order dendrites both in cultured neurons and living mice. Moreover, SLK is required to maintain excitation-inhibition balance. Specifically, SLK knockdown causes a selective loss of inhibitory synapses and functional inhibition after postnatal day 15, while excitatory neurotransmission is unaffected. This mechanism may be relevant for human disease, as dysmorphic neurons within human cortical malformations exhibit significant loss of SLK expression. To uncover the signaling cascades underlying the action of SLK, we combined phosphoproteomics, protein interaction screens and single cell RNA seq. Overall, our data identifies SLK as a key regulator of both dendritic complexity during development and of inhibitory synapse maintenance.
Microbial modulation of zebrafish behavior and brain development
There is growing recognition that host-associated microbiotas modulate intrinsic neurodevelopmental programs including those underlying human social behavior. Despite this awareness, the fundamental processes are generally not understood. We discovered that the zebrafish microbiota is necessary for normal social behavior. By examining neuronal correlates of behavior, we found that the microbiota restrains neurite complexity and targeting of key forebrain neurons within the social behavior circuitry. The microbiota is also necessary for both localization and molecular functions of forebrain microglia, brain-resident phagocytes that remodel neuronal arbors. In particular, the microbiota promotes expression of complement signaling pathway components important for synapse remodeling. Our work provides evidence that the microbiota modulates zebrafish social behavior by stimulating microglial remodeling of forebrain circuits during early neurodevelopment and suggests molecular pathways for therapeutic interventions during atypical neurodevelopment.
The balanced brain: two-photon microscopy of inhibitory synapse formation
Coordination between excitatory and inhibitory synapses (providing positive and negative signals respectively) is required to ensure proper information processing in the brain. Many brain disorders, especially neurodevelopental disorders, are rooted in a specific disturbance of this coordination. In my research group we use a combination of two-photon microscopy and electrophisiology to examine how inhibitory synapses are fromed and how this formation is coordinated with nearby excitatroy synapses.
Neuron-glial interactions in health and disease: from cognition to cancer
In the central nervous system, neuronal activity is a critical regulator of development and plasticity. Activity-dependent proliferation of healthy glial progenitors, oligodendrocyte precursor cells (OPCs), and the consequent generation of new oligodendrocytes contributes to adaptive myelination. This plasticity of myelin tunes neural circuit function and contributes to healthy cognition. The robust mitogenic effect of neuronal activity on normal oligodendroglial precursor cells, a putative cellular origin for many forms of glioma, suggests that dysregulated or “hijacked” mechanisms of myelin plasticity might similarly promote malignant cell proliferation in this devastating group of brain cancers. Indeed, neuronal activity promotes progression of both high-grade and low-grade glioma subtypes in preclinical models. Crucial mechanisms mediating activity-regulated glioma growth include paracrine secretion of BDNF and the synaptic protein neuroligin-3 (NLGN3). NLGN3 induces multiple oncogenic signaling pathways in the cancer cell, and also promotes glutamatergic synapse formation between neurons and glioma cells. Glioma cells integrate into neural circuits synaptically through neuron-to-glioma synapses, and electrically through potassium-evoked currents that are amplified through gap-junctional coupling between tumor cells This synaptic and electrical integration of glioma into neural circuits is central to tumor progression in preclinical models. Thus, neuron-glial interactions not only modulate neural circuit structure and function in the healthy brain, but paracrine and synaptic neuron-glioma interactions also play important roles in the pathogenesis of glial cancers. The mechanistic parallels between normal and malignant neuron-glial interactions underscores the extent to which mechanisms of neurodevelopment and plasticity are subverted by malignant gliomas, and the importance of understanding the neuroscience of cancer.
Targeting thalamic circuits rescues motor and mood deficits in PD mice
Although bradykinesia, tremor, and rigidity are hallmark motor defects in Parkinson’s disease (PD) patients, they also experience motor learning impairments and non-motor symptoms such as depression. The neural basis for these different PD symptoms are not well understood. While current treatments are effective for locomotion deficits in PD, therapeutic strategies targeting motor learning deficits and non-motor symptoms are lacking. We found that distinct parafascicular (PF) thalamic subpopulations project to caudate putamen (CPu), subthalamic nucleus (STN), and nucleus accumbens (NAc). While PF-->CPu and PF-->STN circuits are critical for locomotion and motor learning respectively, inhibition of the PF-->NAc circuit induced a depression-like state. While chemogenetically manipulating CPu-projecting PF neurons led to a long-term restoration of locomotion, optogenetic long-term potentiation at PF-->STN synapses restored motor learning behavior in PD model mice. Furthermore, activation of NAc-projecting PF neurons rescued depression-like PD phenotypes. Importantly, we identified nicotinic acetylcholine receptors capable of modulating PF circuits to rescue different PD phenotypes. Thus, targeting PF thalamic circuits may be an effective strategy for treating motor and non-motor deficits in PD.
Dynamics of cortical circuits: underlying mechanisms and computational implications
A signature feature of cortical circuits is the irregularity of neuronal firing, which manifests itself in the high temporal variability of spiking and the broad distribution of rates. Theoretical works have shown that this feature emerges dynamically in network models if coupling between cells is strong, i.e. if the mean number of synapses per neuron K is large and synaptic efficacy is of order 1/\sqrt{K}. However, the degree to which these models capture the mechanisms underlying neuronal firing in cortical circuits is not fully understood. Results have been derived using neuron models with current-based synapses, i.e. neglecting the dependence of synaptic current on the membrane potential, and an understanding of how irregular firing emerges in models with conductance-based synapses is still lacking. Moreover, at odds with the nonlinear responses to multiple stimuli observed in cortex, network models with strongly coupled cells respond linearly to inputs. In this talk, I will discuss the emergence of irregular firing and nonlinear response in networks of leaky integrate-and-fire neurons. First, I will show that, when synapses are conductance-based, irregular firing emerges if synaptic efficacy is of order 1/\log(K) and, unlike in current-based models, persists even under the large heterogeneity of connections which has been reported experimentally. I will then describe an analysis of neural responses as a function of coupling strength and show that, while a linear input-output relation is ubiquitous at strong coupling, nonlinear responses are prominent at moderate coupling. I will conclude by discussing experimental evidence of moderate coupling and loose balance in the mouse cortex.
Meta-learning functional plasticity rules in neural networks
Synaptic plasticity is known to be a key player in the brain’s life-long learning abilities. However, due to experimental limitations, the nature of the local changes at individual synapses and their link with emerging network-level computations remain unclear. I will present a numerical, meta-learning approach to deduce plasticity rules from either neuronal activity data and/or prior knowledge about the network's computation. I will first show how to recover known rules, given a human-designed loss function in rate networks, or directly from data, using an adversarial approach. Then I will present how to scale-up this approach to recurrent spiking networks using simulation-based inference.
Can a single neuron solve MNIST? Neural computation of machine learning tasks emerges from the interaction of dendritic properties
Physiological experiments have highlighted how the dendrites of biological neurons can nonlinearly process distributed synaptic inputs. However, it is unclear how qualitative aspects of a dendritic tree, such as its branched morphology, its repetition of presynaptic inputs, voltage-gated ion channels, electrical properties and complex synapses, determine neural computation beyond this apparent nonlinearity. While it has been speculated that the dendritic tree of a neuron can be seen as a multi-layer neural network and it has been shown that such an architecture could be computationally strong, we do not know if that computational strength is preserved under these qualitative biological constraints. Here we simulate multi-layer neural network models of dendritic computation with and without these constraints. We find that dendritic model performance on interesting machine learning tasks is not hurt by most of these constraints and may synergistically benefit from all of them combined. Our results suggest that single real dendritic trees may be able to learn a surprisingly broad range of tasks through the emergent capabilities afforded by their properties.
A biologically plausible inhibitory plasticity rule for world-model learning in SNNs
Memory consolidation is the process by which recent experiences are assimilated into long-term memory. In animals, this process requires the offline replay of sequences observed during online exploration in the hippocampus. Recent experimental work has found that salient but task-irrelevant stimuli are systematically excluded from these replay epochs, suggesting that replay samples from an abstracted model of the world, rather than verbatim previous experiences. We find that this phenomenon can be explained parsimoniously and biologically plausibly by a Hebbian spike time-dependent plasticity rule at inhibitory synapses. Using spiking networks at three levels of abstraction–leaky integrate-and-fire, biophysically detailed, and abstract binary–we show that this rule enables efficient inference of a model of the structure of the world. While plasticity has previously mainly been studied at excitatory synapses, we find that plasticity at excitatory synapses alone is insufficient to accomplish this type of structural learning. We present theoretical results in a simplified model showing that in the presence of Hebbian excitatory and inhibitory plasticity, the replayed sequences form a statistical estimator of a latent sequence, which converges asymptotically to the ground truth. Our work outlines a direct link between the synaptic and cognitive levels of memory consolidation, and highlights a potential conceptually distinct role for inhibition in computing with SNNs.
Nonlinear computations in spiking neural networks through multiplicative synapses
The brain efficiently performs nonlinear computations through its intricate networks of spiking neurons, but how this is done remains elusive. While recurrent spiking networks implementing linear computations can be directly derived and easily understood (e.g., in the spike coding network (SCN) framework), the connectivity required for nonlinear computations can be harder to interpret, as they require additional non-linearities (e.g., dendritic or synaptic) weighted through supervised training. Here we extend the SCN framework to directly implement any polynomial dynamical system. This results in networks requiring multiplicative synapses, which we term the multiplicative spike coding network (mSCN). We demonstrate how the required connectivity for several nonlinear dynamical systems can be directly derived and implemented in mSCNs, without training. We also show how to precisely carry out higher-order polynomials with coupled networks that use only pair-wise multiplicative synapses, and provide expected numbers of connections for each synapse type. Overall, our work provides an alternative method for implementing nonlinear computations in spiking neural networks, while keeping all the attractive features of standard SCNs such as robustness, irregular and sparse firing, and interpretable connectivity. Finally, we discuss the biological plausibility of mSCNs, and how the high accuracy and robustness of the approach may be of interest for neuromorphic computing.
Brian2CUDA: Generating Efficient CUDA Code for Spiking Neural Networks
Graphics processing units (GPUs) are widely available and have been used with great success to accelerate scientific computing in the last decade. These advances, however, are often not available to researchers interested in simulating spiking neural networks, but lacking the technical knowledge to write the necessary low-level code. Writing low-level code is not necessary when using the popular Brian simulator, which provides a framework to generate efficient CPU code from high-level model definitions in Python. Here, we present Brian2CUDA, an open-source software that extends the Brian simulator with a GPU backend. Our implementation generates efficient code for the numerical integration of neuronal states and for the propagation of synaptic events on GPUs, making use of their massively parallel arithmetic capabilities. We benchmark the performance improvements of our software for several model types and find that it can accelerate simulations by up to three orders of magnitude compared to Brian’s CPU backend. Currently, Brian2CUDA is the only package that supports Brian’s full feature set on GPUs, including arbitrary neuron and synapse models, plasticity rules, and heterogeneous delays. When comparing its performance with Brian2GeNN, another GPU-based backend for the Brian simulator with fewer features, we find that Brian2CUDA gives comparable speedups, while being typically slower for small and faster for large networks. By combining the flexibility of the Brian simulator with the simulation speed of GPUs, Brian2CUDA enables researchers to efficiently simulate spiking neural networks with minimal effort and thereby makes the advancements of GPU computing available to a larger audience of neuroscientists.
Chandelier cells shine a light on the emergence of GABAergic circuits in the cortex
GABAergic interneurons are chiefly responsible for controlling the activity of local circuits in the cortex. Chandelier cells (ChCs) are a type of GABAergic interneuron that control the output of hundreds of neighbouring pyramidal cells through axo-axonic synapses which target the axon initial segment (AIS). Despite their importance in modulating circuit activity, our knowledge of the development and function of axo-axonic synapses remains elusive. We have investigated the emergence and plasticity of axo-axonic synapses in layer 2/3 of the somatosensory cortex (S1) and found that ChCs follow what appear to be homeostatic rules when forming synapses with pyramidal neurons. We are currently implementing in vivo techniques to image the process of axo-axonic synapse formation during development and uncover the dynamics of synaptogenesis and pruning at the AIS. In addition, we are using an all-optical approach to both activate and measure the activity of chandelier cells and their postsynaptic partners in the primary visual cortex (V1) and somatosensory cortex (S1) in mice, also during development. We aim to provide a structural and functional description of the emergence and plasticity of a GABAergic synapse type in the cortex.
Online Training of Spiking Recurrent Neural Networks With Memristive Synapses
Spiking recurrent neural networks (RNNs) are a promising tool for solving a wide variety of complex cognitive and motor tasks, due to their rich temporal dynamics and sparse processing. However training spiking RNNs on dedicated neuromorphic hardware is still an open challenge. This is due mainly to the lack of local, hardware-friendly learning mechanisms that can solve the temporal credit assignment problem and ensure stable network dynamics, even when the weight resolution is limited. These challenges are further accentuated, if one resorts to using memristive devices for in-memory computing to resolve the von-Neumann bottleneck problem, at the expense of a substantial increase in variability in both the computation and the working memory of the spiking RNNs. In this talk, I will present our recent work where we introduced a PyTorch simulation framework of memristive crossbar arrays that enables accurate investigation of such challenges. I will show that recently proposed e-prop learning rule can be used to train spiking RNNs whose weights are emulated in the presented simulation framework. Although e-prop locally approximates the ideal synaptic updates, it is difficult to implement the updates on the memristive substrate due to substantial device non-idealities. I will mention several widely adapted weight update schemes that primarily aim to cope with these device non-idealities and demonstrate that accumulating gradients can enable online and efficient training of spiking RNN on memristive substrates.
Drifting assemblies for persistent memory: Neuron transitions and unsupervised compensation
Change is ubiquitous in living beings. In particular, the connectome and neural representations can change. Nevertheless behaviors and memories often persist over long times. In a standard model, associative memories are represented by assemblies of strongly interconnected neurons. For faithful storage these assemblies are assumed to consist of the same neurons over time. We propose a contrasting memory model with complete temporal remodeling of assemblies, based on experimentally observed changes of synapses and neural representations. The assemblies drift freely as noisy autonomous network activity or spontaneous synaptic turnover induce neuron exchange. The exchange can be described analytically by reduced, random walk models derived from spiking neural network dynamics or from first principles. The gradual exchange allows activity-dependent and homeostatic plasticity to conserve the representational structure and keep inputs, outputs and assemblies consistent. This leads to persistent memory. Our findings explain recent experimental results on temporal evolution of fear memory representations and suggest that memory systems need to be understood in their completeness as individual parts may constantly change.
Cell-type specific genomics and transcriptomics of HIV in the brain
Exploration of genome organization and function in the HIV infected brain is critical to aid in the understanding and development of treatments for HIV-associated neurocognitive disorder (HAND). Here, we applied a multiomic approach, including single nuclei transcriptomics, cell-type specific Hi-C 3D genome mapping, and viral integration site sequencing (IS-seq) to frontal lobe tissue from HIV-infected individuals with encephalitis (HIVE) and without encephalitis (HIV+). We observed reorganization of open/repressive (A/B) compartment structures in HIVE microglia encompassing 6.4% of the genome with enrichment for regions containing interferon (IFN) pathway genes. 3D genome remodeling was associated with transcriptomic reprogramming, including down-regulation of cell adhesion and synapse-related functions and robust activation of IFN signaling and cell migratory pathways, and was recapitulated by IFN-g stimulation of cultured microglial cells. Microglia from HIV+ brains showed, to a lesser extent, similar transcriptional alterations. IS-seq recovered 1,221 integration sites in the brain that were enriched for chromosomal domains newly mobilized into a permissive chromatin environment in HIVE microglia. Viral transcription, which was detected in 0.003% of all nuclei in HIVE brain, occurred in a subset of highly activated microglia that drove differential expression in HIVE. Thus, we observed a dynamic interrelationship of interferon-associated 3D genome and transcriptome remodeling with HIV integration and transcription in the brain.
Efficient Random Codes in a Shallow Neural Network
Efficient coding has served as a guiding principle in understanding the neural code. To date, however, it has been explored mainly in the context of peripheral sensory cells with simple tuning curves. By contrast, ‘deeper’ neurons such as grid cells come with more complex tuning properties which imply a different, yet highly efficient, strategy for representing information. I will show that a highly efficient code is not specific to a population of neurons with finely tuned response properties: it emerges robustly in a shallow network with random synapses. Here, the geometry of population responses implies that optimality obtains from a tradeoff between two qualitatively different types of error: ‘local’ errors (common to classical neural population codes) and ‘global’ (or ‘catastrophic’) errors. This tradeoff leads to efficient compression of information from a high-dimensional representation to a low-dimensional one. After describing the theoretical framework, I will use it to re-interpret recordings of motor cortex in behaving monkey. Our framework addresses the encoding of (sensory) information; if time allows, I will comment on ongoing work that focuses on decoding from the perspective of efficient coding.
Translation at the Synapse
The evolution of computation in the brain: Insights from studying the retina
The retina is probably the most accessible part of the vertebrate central nervous system. Its computational logic can be interrogated in a dish, from patterns of lights as the natural input, to spike trains on the optic nerve as the natural output. Consequently, retinal circuits include some of the best understood computational networks in neuroscience. The retina is also ancient, and central to the emergence of neurally complex life on our planet. Alongside new locomotor strategies, the parallel evolution of image forming vision in vertebrate and invertebrate lineages is thought to have driven speciation during the Cambrian. This early investment in sophisticated vision is evident in the fossil record and from comparing the retina’s structural make up in extant species. Animals as diverse as eagles and lampreys share the same retinal make up of five classes of neurons, arranged into three nuclear layers flanking two synaptic layers. Some retina neuron types can be linked across the entire vertebrate tree of life. And yet, the functions that homologous neurons serve in different species, and the circuits that they innervate to do so, are often distinct to acknowledge the vast differences in species-specific visuo-behavioural demands. In the lab, we aim to leverage the vertebrate retina as a discovery platform for understanding the evolution of computation in the nervous system. Working on zebrafish alongside birds, frogs and sharks, we ask: How do synapses, neurons and networks enable ‘function’, and how can they rearrange to meet new sensory and behavioural demands on evolutionary timescales?
Translation at the Synapse
The complex morphology of neurons, with synapses located hundreds of microns from the cell body, necessitates the localization of important cell biological machines, including ribosomes, within dendrites and axons. Local translation of mRNAs is important for the function and plasticity of synapses. Using advanced sequencing and imaging techniques we have updated our understanding of the local transcriptome and identified the local translatome- identifying over 800 transcripts for which local translation is the dominant source of protein. In addition, we have explored the unique mechanisms neurons use to meet protein demands at synapses, identifying surprising features of neuronal and synaptic protein synthesis.
Neural Circuit Mechanisms of Pattern Separation in the Dentate Gyrus
The ability to discriminate different sensory patterns by disentangling their neural representations is an important property of neural networks. While a variety of learning rules are known to be highly effective at fine-tuning synapses to achieve this, less is known about how different cell types in the brain can facilitate this process by providing architectural priors that bias the network towards sparse, selective, and discriminable representations. We studied this by simulating a neuronal network modelled on the dentate gyrus—an area characterised by sparse activity associated with pattern separation in spatial memory tasks. To test the contribution of different cell types to these functions, we presented the model with a wide dynamic range of input patterns and systematically added or removed different circuit elements. We found that recruiting feedback inhibition indirectly via recurrent excitatory neurons proved particularly helpful in disentangling patterns, and show that simple alignment principles for excitatory and inhibitory connections are a highly effective strategy.
Molecular Logic of Synapse Organization and Plasticity
Connections between nerve cells called synapses are the fundamental units of communication and information processing in the brain. The accurate wiring of neurons through synapses into neural networks or circuits is essential for brain organization. Neuronal networks are sculpted and refined throughout life by constant adjustment of the strength of synaptic communication by neuronal activity, a process known as synaptic plasticity. Deficits in the development or plasticity of synapses underlie various neuropsychiatric disorders, including autism, schizophrenia and intellectual disability. The Siddiqui lab research program comprises three major themes. One, to assess how biochemical switches control the activity of synapse organizing proteins, how these switches act through their binding partners and how these processes are regulated to correct impaired synaptic function in disease. Two, to investigate how synapse organizers regulate the specificity of neuronal circuit development and how defined circuits contribute to cognition and behaviour. Three, to address how synapses are formed in the developing brain and maintained in the mature brain and how microcircuits formed by synapses are refined to fine-tune information processing in the brain. Together, these studies have generated fundamental new knowledge about neuronal circuit development and plasticity and enabled us to identify targets for therapeutic intervention.
Malignant synaptic plasticity in pediatric high-grade gliomas
Pediatric high-grade gliomas (pHGG) are a devastating group of diseases that urgently require novel therapeutic options. We have previously demonstrated that pHGGs directly synapse onto neurons and the subsequent tumor cell depolarization, mediated by calcium-permeable AMPA channels, promotes their proliferation. The regulatory mechanisms governing these postsynaptic connections are unknown. Here, we investigated the role of BDNF-TrkB signaling in modulating the plasticity of the malignant synapse. BDNF ligand activation of its canonical receptor, TrkB (which is encoded for by the gene NTRK2), has been shown to be one important modulator of synaptic regulation in the normal setting. Electrophysiological recordings of glioma cell membrane properties, in response to acute neurotransmitter stimulation, demonstrate in an inward current resembling AMPA receptor (AMPAR) mediated excitatory neurotransmission. Extracellular BDNF increases the amplitude of this glutamate-induced tumor cell depolarization and this effect is abrogated in NTRK2 knockout glioma cells. Upon examining tumor cell excitability using in situ calcium imaging, we found that BDNF increases the intensity of glutamate-evoked calcium transients in GCaMP6s expressing glioma cells. Western blot analysis indicates the tumors AMPAR properties are altered downstream of BDNF induced TrkB activation in glioma. Cell membrane protein capture (via biotinylation) and live imaging of pH sensitive GFP-tagged AMPAR subunits demonstrate an increase of calcium permeable channels at the tumors postsynaptic membrane in response to BDNF. We find that BDNF-TrkB signaling promotes neuron-to-glioma synaptogenesis as measured by high-resolution confocal and electron microscopy in culture and tumor xenografts. Our analysis of published pHGG transcriptomic datasets, together with brain slice conditioned medium experiments in culture, indicates the tumor microenvironment as the chief source of BDNF ligand. Disruption of the BDNF-TrkB pathway in patient-derived orthotopic glioma xenograft models, both genetically and pharmacologically, results in an increased overall survival and reduced tumor proliferation rate. These findings suggest that gliomas leverage normal mechanisms of plasticity to modulate the excitatory channels involved in synaptic neurotransmission and they reveal the potential to target the regulatory components of glioma circuit dynamics as a therapeutic strategy for these lethal cancers.
Computational modelling of neurotransmitter release
Synaptic transmission provides the basis for neuronal communication. When an action-potential propagates through the axonal arbour, it activates voltage-gated Ca2+ channels located in the vicinity of release-ready synaptic vesicles docked at the presynaptic active zone. Ca2+ ions enter the presynaptic terminal and activate the vesicular Ca2+ sensor, thereby triggering neurotransmitter release. This whole process occurs on a timescale of a few milliseconds. In addition to fast, synchronous release, which keeps pace with action potentials, many synapses also exhibit delayed asynchronous release that persists for tens to hundreds of milliseconds. In this talk I will demonstrate how experimentally constrained computational modelling of underlying biological processes can complement laboratory studies (using electrophysiology and imaging techniques) and provide insights into the mechanisms of synaptic transmission.
How are nervous systems remodeled in complex metazoans?
Early in development the nervous system is constructed with far too many neurons that make an excessive number of synaptic connections. Later, a wave of neuronal remodeling radically reshapes nervous system wiring and cell numbers through the selective elimination of excess synapses, axons and dendrites, and even whole neurons. This remodeling is widespread across the nervous system, extensive in terms of how much individual brain regions can change (e.g. in some cases 50% of neurons integrated into a brain circuit are eliminated), and thought to be essential for optimizing nervous system function. Perturbations of neuronal remodeling are thought to underlie devastating neurodevelopmental disorders including autism spectrum disorder, schizophrenia, and epilepsy. This seminar will discuss our efforts to use the relatively simple nervous system of Drosophila to understand the mechanistic basis by which cells, or parts of cells, are specified for removal and eliminated from the nervous system.
MicroRNAs as targets in the epilepsies: hits, misses and complexes
MicroRNAs are small noncoding RNAs that provide a critical layer of gene expression control. Individual microRNAs variably exert effects across networks of genes via sequence-specific binding to mRNAs, fine-tuning protein levels. This helps coordinate the timing and specification of cell fate transitions during brain development and maintains neural circuit function and plasticity by activity-dependent (re)shaping of synapses and the levels of neurotransmitter components. MicroRNA levels have been found to be altered in tissue from the epileptogenic zone resected from adults with drug-resistant focal epilepsy and this has driven efforts to explore their therapeutic potential, in particular using antisense oligonucleotide (ASOs) inhibitors termed antimirs. Here, we review the molecular mechanisms by which microRNAs control brain excitability and the latest progress towards a microRNA-based treatment for temporal lobe epilepsy. We also look at whether microRNA-based approaches could be used to treat genetic epilepsies, correcting individual genes or dysregulated pathways. Finally, we look at how cells have evolved to maximise the efficiency of the microRNA system via RNA editing, where single base changes is capable of altering the repertoire of genes under the control of a single microRNA. The findings improve our understanding of the molecular landscape of the epileptic brain and may lead to new therapies.
Optimization at the Single Neuron Level: Prediction of Spike Sequences and Emergence of Synaptic Plasticity Mechanisms
Intelligent behavior depends on the brain’s ability to anticipate future events. However, the learning rules that enable neurons to predict and fire ahead of sensory inputs remain largely unknown. We propose a plasticity rule based on pre-dictive processing, where the neuron learns a low-rank model of the synaptic input dynamics in its membrane potential. Neurons thereby amplify those synapses that maximally predict other synaptic inputs based on their temporal relations, which provide a solution to an optimization problem that can be implemented at the single-neuron level using only local information. Consequently, neurons learn sequences over long timescales and shift their spikes towards the first inputs in a sequence. We show that this mechanism can explain the development of anticipatory motion signaling and recall in the visual system. Furthermore, we demonstrate that the learning rule gives rise to several experimentally observed STDP (spike-timing-dependent plasticity) mechanisms. These findings suggest prediction as a guiding principle to orchestrate learning and synaptic plasticity in single neurons.
Charting the Proteome Landscape of Diverse Synapses In Vivo
The Synaptome Architecture of the Brain: Lifespan, disease, evolution and behavior
The overall aim of my research is to understand how the organisation of the synapse, with particular reference to the postsynaptic proteome (PSP) of excitatory synapses in the brain, informs the fundamental mechanisms of learning, memory and behaviour and how these mechanisms go awry in neurological dysfunction. The PSP indeed bears a remarkable burden of disease, with components being disrupted in disorders (synaptopathies) including schizophrenia, depression, autism and intellectual disability. Our work has been fundamental in revealing and then characterising the unprecedented complexity (>1000 highly conserved proteins) of the PSP in terms of the subsynaptic architecture of postsynaptic proteins such as PSD95 and how these proteins assemble into complexes and supercomplexes in different neurons and regions of the brain. Characterising the PSPs in multiple species, including human and mouse, has revealed differences in key sets of functionally important proteins, correlates with brain imaging and connectome data, and a differential distribution of disease-relevant proteins and pathways. Such studies have also provided important insight into synapse evolution, establishing that vertebrate behavioural complexity is a product of the evolutionary expansion in synapse proteomes that occurred ~500 million years ago. My lab has identified many mutations causing cognitive impairments in mice before they were found to cause human disorders. Our proteomic studies revealed that >130 brain diseases are caused by mutations affecting postsynaptic proteins. We uncovered mechanisms that explain the polygenic basis and age of onset of schizophrenia, with postsynaptic proteins, including PSD95 supercomplexes, carrying much of the polygenic burden. We discovered the “Genetic Lifespan Calendar”, a genomic programme controlling when genes are regulated. We showed that this could explain how schizophrenia susceptibility genes are timed to exert their effects in young adults. The Genes to Cognition programme is the largest genetic study so far undertaken into the synaptic molecular mechanisms underlying behaviour and physiology. We made important conceptual advances that inform how the repertoire of both innate and learned behaviours is built from unique combinations of postsynaptic proteins that either amplify or attenuate the behavioural response. This constitutes a key advance in understanding how the brain decodes information inherent in patterns of nerve impulses, and provides insight into why the PSP has evolved to be so complex, and consequently why the phenotypes of synaptopathies are so diverse. Our most recent work has opened a new phase, and scale, in understanding synapses with the first synaptome maps of the brain. We have developed next-generation methods (SYNMAP) that enable single-synapse resolution molecular mapping across the whole mouse brain and extensive regions of the human brain, revealing the molecular and morphological features of a billion synapses. This has already uncovered unprecedented spatiotemporal synapse diversity organised into an architecture that correlates with the structural and functional connectomes, and shown how mutations that cause cognitive disorders reorganise these synaptome maps; for example, by detecting vulnerable synapse subtypes and synapse loss in Alzheimer’s disease. This innovative synaptome mapping technology has huge potential to help characterise how the brain changes during normal development, including in specific cell types, and with degeneration, facilitating novel pathways to diagnosis and therapy.
From the cell biology of synaptic plasticity to SFARI
Functional Divergence at the Mouse Bipolar Cell Terminal
Research in our lab focuses on the circuit mechanisms underlying sensory computation. We use the mouse retina as a model system because it allows us to stimulate the circuit precisely with its natural input, patterns of light, and record its natural output, the spike trains of retinal ganglion cells. We harness the power of genetic manipulations and detailed information about cell types to uncover new circuits and discover their role in visual processing. Our methods include electrophysiology, computational modeling, and circuit tracing using a variety of imaging techniques.
Astroglial modulation of the antidepressant action of deep brain and bright light stimulation
Even if major depression is now the most common of psychiatric disorders, successful antidepressant treatments are still difficult to achieve. Therefore, a better understanding of the mechanisms of action of current antidepressant treatments is needed to ultimately identify new targets and enhance beneficial effects. Given the intimate relationships between astrocytes and neurons at synapses and the ability of astrocytes to "sense" neuronal communication and release gliotransmitters, an attractive hypothesis is emerging stating that the effects of antidepressants on brain function could be, at least in part, modulated by direct influences of astrocytes on neuronal networks. We will present two preclinical studies revealing a permissive role of glia in the antidepressant response: i) Control of the antidepressant-like effects of rat prefrontal cortex Deep Brain Stimulation (DBS) by astroglia, ii) Modulation of antidepressant efficacy of Bright Light Stimulation (BLS) by lateral habenula astroglia. Therefore, it is proposed that an unaltered neuronal-glial system constitutes a major prerequisite to optimize antidepressant efficacy of DBS or BLS. Collectively, these results pave also the way to the development of safer and more effective antidepressant strategies.
Homeostatic Plasticity in Health and Disease
Dr. Davis will present a summary regarding the identification and characterization of mechanisms of homeostatic plasticity as they relate to the control of synaptic transmission. He will then provide evidence of translation to the mammalian neuromuscular junction and central synapses, and provide tangible links to the etiology of neurological disease.
Learning binds novel inputs into functional synaptic clusters via spinogenesis
Learning is known to induce the formation of new dendritic spines, but despite decades of effort, the functional properties of new spines in vivo remain unknown. Here, using a combination of longitudinal in vivo 2-photon imaging of the glutamate reporter, iGluSnFR, and correlated electron microscopy (CLEM) of dendritic spines on the apical dendrites of L2/3 excitatory neurons in the motor cortex during motor learning, we describe a framework of new spines' formation, survival, and resulting function. Specifically, our data indicate that the potentiation of a subset of clustered, pre-existing spines showing task-related activity in early sessions of learning creates a micro-environment of plasticity within dendrites, wherein multiple filopodia sample the nearby neuropil, form connections with pre-existing boutons connected to allodendritic spines, and are then selected for survival based on co-activity with nearby task-related spines. Thus, the formation and survival of new spines is determined by the functional micro-environment of dendrites. After formation, new spines show preferential co-activation with nearby task-related spines. This synchronous activity is more specific to movements than activation of the individual spines in isolation, and further, is coincident with movements that are more similar to the learned pattern. Thus, new spines functionally engage with their parent clusters to signal the learned movement. Finally, by reconstructing the axons associated with new spines, we found that they synapse with axons previously unrepresented in these dendritic domains, suggesting that the strong local co-activity structure exhibited by new spines is likely not due to axon sharing. Thus, learning involves the binding of new information streams into functional synaptic clusters to subserve the learned behavior.
Experience-Dependent Transcription: From Genomic Mechanisms to Neural Circuit Function
Experience-dependent transcription is a key molecular mechanisms for regulating the development and plasticity of synapses and neural circuits and is thought to underlie cognitive functions such as perception, learning and memory. After two years of COVID-pandemic, the goal of this online conference is to allow investigators in the field to reconnect and to discuss their recent scientific findings.
Turning spikes to space: The storage capacity of tempotrons with plastic synaptic dynamics
Neurons in the brain communicate through action potentials (spikes) that are transmitted through chemical synapses. Throughout the last decades, the question how networks of spiking neurons represent and process information has remained an important challenge. Some progress has resulted from a recent family of supervised learning rules (tempotrons) for models of spiking neurons. However, these studies have viewed synaptic transmission as static and characterized synaptic efficacies as scalar quantities that change only on slow time scales of learning across trials but remain fixed on the fast time scales of information processing within a trial. By contrast, signal transduction at chemical synapses in the brain results from complex molecular interactions between multiple biochemical processes whose dynamics result in substantial short-term plasticity of most connections. Here we study the computational capabilities of spiking neurons whose synapses are dynamic and plastic, such that each individual synapse can learn its own dynamics. We derive tempotron learning rules for current-based leaky-integrate-and-fire neurons with different types of dynamic synapses. Introducing ordinal synapses whose efficacies depend only on the order of input spikes, we establish an upper capacity bound for spiking neurons with dynamic synapses. We compare this bound to independent synapses, static synapses and to the well established phenomenological Tsodyks-Markram model. We show that synaptic dynamics in principle allow the storage capacity of spiking neurons to scale with the number of input spikes and that this increase in capacity can be traded for greater robustness to input noise, such as spike time jitter. Our work highlights the feasibility of a novel computational paradigm for spiking neural circuits with plastic synaptic dynamics: Rather than being determined by the fixed number of afferents, the dimensionality of a neuron's decision space can be scaled flexibly through the number of input spikes emitted by its input layer.
How does a neuron decide when and where to make a synapse?
Precise synaptic connectivity is a prerequisite for the function of neural circuits, yet individual neurons, taken out of their developmental context, readily form unspecific synapses. How does genetically encoded brain wiring deal with this apparent contradiction? Brain wiring is a developmental growth process that is not only characterized by precision, but also flexibility and robustness. As in any other growth process, cellular interactions are restricted in space and time. Correspondingly, molecular and cellular interactions are restricted to those that 'get to see' each other during development. This seminar will explore the question how neurons decide when and where to make synapses using the Drosophila visual system as a model. New findings reveal that pattern formation during growth and the kinetics of live neuronal interactions restrict synapse formation and partner choice for neurons that are not otherwise prevented from making incorrect synapses in this system. For example, cell biological mechanisms like autophagy as well as developmental temperature restrict inappropriate partner choice through a process of kinetic exclusion that critically contributes to wiring specificity. The seminar will explore these and other neuronal strategies when and where to make synapses during developmental growth that contribute to precise, flexible and robust outcomes in brain wiring.
Modulation of oligodendrocyte development and myelination by voltage-gated Ca++ channels
The oligodendrocyte generates CNS myelin, which is essential for normal nervous system function. Thus, investigating the regulatory and signaling mechanisms that control its differentiation and the production of myelin is relevant to our understanding of brain development and of adult pathologies such as multiple sclerosis. We have recently established that the activity of voltage-gated Ca++ channels is crucial for the adequate migration, proliferation and maturation of oligodendrocyte progenitor cells (OPCs). Furthermore, we have found that voltage-gated Ca++ channels that function in synaptic communication between neurons also mediate synaptic signaling between neurons and OPCs. Thus, we hypothesize that voltage-gated Ca++ channels are central components of OPC-neuronal synapses and are the principal ion channels mediating activity-dependent myelination.
New Mechanisms of Extracellular Matrix Remodeling
In the adult brain, synapses are tightly enwrapped by lattices of extracellular matrix that consist of extremely long-lived molecules. These lattices are deemed to stabilize synapses, restrict the reorganization of their transmission machinery, and prevent them from undergoing structural or morphological changes. At the same time, they are expected to retain some degree of flexibility to permit occasional events of synaptic plasticity. The recent understanding that structural changes to synapses are significantly more frequent than previously assumed (occurring even on a timescale of minutes) has called for a mechanism that allows continual and energy-efficient remodeling of the ECM at synapses. I review in the talk our recent work showcasing such a process, based on the constitutive recycling of synaptic ECM molecules. I discuss the key characteristics of this mechanism, focusing on its roles in mediating synaptic transmission and plasticity, and speculate on additional potential functions in neuronal signaling.
Input and target-selective plasticity in sensory neocortex during learning
Behavioral experience shapes neural circuits, adding and subtracting connections between neurons that will ultimately control sensation and perception. We are using natural sensory experience to uncover basic principles of information processing in the cerebral cortex, with a focus on how sensory learning can selectively alter synaptic strength. I will discuss recent findings that differentiate reinforcement learning from sensory experience, showing rapid and selective plasticity of thalamic and inhibitory synapses within primary sensory cortex.
A Flash of Darkness within Dusk: Crossover inhibition in the mouse retina
To survive in the wild small rodents evolved specialized retinas. To escape predators, looming shadows need to be detected with speed and precision. To evade starvation, small seeds, grass, nuts and insects need to also be detected quickly. Some of these succulent seeds and insects may be camouflaged offering only low contrast targets.Moreover, these challenging tasks need to be accomplished continuously at dusk, night, dawn and daytime. Crossover inhibition is thought to be involved in enhancing contrast detectionin the microcircuits of the inner plexiform layer of the mammalian retina. The AII amacrine cells are narrow field cells that play a key role in crossover inhibition. Our lab studies the synaptic physiology that regulates glycine release from AII amacrine cellsin mouse retina. These interneurons receive excitation from rod and conebipolar cells and transmit excitation to ON-type bipolar cell terminals via gap junctions. They also transmit inhibition via multiple glycinergic synapses onto OFF bipolar cell terminals.AII amacrine cells are thus a central hub of synaptic information processing that cross links the ON and the OFF pathways. What are the functions of crossover inhibition? How does it enhance contrast detection at different ambient light levels? How is the dynamicrange, frequency response and synaptic gain of glycine release modulated by luminance levels and circadian rhythms? How is synaptic gain changed by different extracellular neuromodulators, like dopamine, and by intracellular messengers like cAMP, phosphateand Ca2+ ions from Ca2+ channels and Ca2+ stores? My talk will try to answer some of these questions and will pose additional ones. It will end with further hypothesis and speculations on the multiple roles of crossover inhibition.
Mechanisms of Axon Growth and Regeneration
Almost everybody that has seen neurons under a microscope for the first time is fascinated by their beauty and their complex shape. Early on during development, however, there are hardly any signs of their future complexity, but the neurons look round and simple. How do neurons develop their sophisticated structure? How do they initially generate domains that later have distinct function within neuronal circuits, such as the axon? And, can a better understanding of the underlying developmental mechanisms help us in pathological conditions, such as a spinal cord injury, to induce axons to regenerate? Here, I will talk about the cytoskeleton as a driving force for neuronal polarization. We will then explore how cytoskeletal changes help to reactivate the growth program of injured CNS axons to elicit axon regeneration after a spinal cord injury. Finally, we will discuss whether axon growth and synapse formation may be processes in neurons that might exclude each other. Following this developmental hypothesis, it will help us to generate a novel perspective on regeneration failure in the adult CNS, and how we can overcome this failure to induce axon regeneration. Thus, this talk will describe how we can exploit developmental mechanisms to induce axon regeneration after a spinal cord injury.
Exploratory learning outside the brain
Learning entails self-modification of a system under closed-loop dynamics with its environment. Not only the system's components may change, but also the way they interact with one another - like synapses during learning in the brain, that modify interactions between neurons. Such processes, however, are not limited to the brain but can be found also in other areas of biology. I will describe a framework for a primitive form of learning that takes place within the single cell. This type of learning is composed of random modifications guided by global feedback. The capacity to utilize exploratory dynamics, improvisational in nature, provide cells with the plasticity required to overcome extreme challenges and to develop novel phenotypes.
Opponent processing in the expanded retinal mosaic of Nymphalid butterflies
In many butterflies, the ancestral trichromatic insect colour vision, based on UV-, blue- and green-sensitive photoreceptors, is extended with red-sensitive cells. Physiological evidence for red receptors has been missing in nymphalid butterflies, although some species can discriminate red hues well. In eight species from genera Archaeoprepona, Argynnis, Charaxes, Danaus, Melitaea, Morpho, Heliconius and Speyeria, we found a novel class of green-sensitive photoreceptors that have hyperpolarizing responses to stimulation with red light. These green-positive, red-negative (G+R–) cells are allocated to positions R1/2, normally occupied by UV and blue-sensitive cells. Spectral sensitivity, polarization sensitivity and temporal dynamics suggest that the red opponent units (R–) are the basal photoreceptors R9, interacting with R1/2 in the same ommatidia via direct inhibitory synapses. We found the G+R– cells exclusively in butterflies with red-shining ommatidia, which contain longitudinal screening pigments. The implementation of the red colour channel with R9 is different from pierid and papilionid butterflies, where cells R5–8 are the red receptors. The nymphalid red-green opponent channel and the potential for tetrachromacy seem to have been switched on several times during evolution, balancing between the cost of neural processing and the value of extended colour information.
A nonlinear shot noise model for calcium-based synaptic plasticity
Activity dependent synaptic plasticity is considered to be a primary mechanism underlying learning and memory. Yet it is unclear whether plasticity rules such as STDP measured in vitro apply in vivo. Network models with STDP predict that activity patterns (e.g., place-cell spatial selectivity) should change much faster than observed experimentally. We address this gap by investigating a nonlinear calcium-based plasticity rule fit to experiments done in physiological conditions. In this model, LTP and LTD result from intracellular calcium transients arising almost exclusively from synchronous coactivation of pre- and postsynaptic neurons. We analytically approximate the full distribution of nonlinear calcium transients as a function of pre- and postsynaptic firing rates, and temporal correlations. This analysis directly relates activity statistics that can be measured in vivo to the changes in synaptic efficacy they cause. Our results highlight that both high-firing rates and temporal correlations can lead to significant changes to synaptic efficacy. Using a mean-field theory, we show that the nonlinear plasticity rule, without any fine-tuning, gives a stable, unimodal synaptic weight distribution characterized by many strong synapses which remain stable over long periods of time, consistent with electrophysiological and behavioral studies. Moreover, our theory explains how memories encoded by strong synapses can be preferentially stabilized by the plasticity rule. We confirmed our analytical results in a spiking recurrent network. Interestingly, although most synapses are weak and undergo rapid turnover, the fraction of strong synapses are sufficient for supporting realistic spiking dynamics and serve to maintain the network’s cluster structure. Our results provide a mechanistic understanding of how stable memories may emerge on the behavioral level from an STDP rule measured in physiological conditions. Furthermore, the plasticity rule we investigate is mathematically equivalent to other learning rules which rely on the statistics of coincidences, so we expect that our formalism will be useful to study other learning processes beyond the calcium-based plasticity rule.
Dysfunctional synaptic vesicle recycling – links to epilepsy
Accurate and synchronous neurotransmitter release is essential for brain communication and occurs when neurotransmitter-containing synaptic vesicles (SVs) fuse to release their content in response to neuronal activity. Neurotransmission is sustained by the process of SV recycling, which generates SVs locally at the presynapse. Until relatively recently it was believed that most mutations in genes that were essential for SV recycling would be incompatible with life, due to this fundamental role. However, this is not the case, with mutations in essential genes for SV fusion, retrieval and recycling identified in individuals with epilepsy. This seminar will cover our laboratory’s progress in determining how genetic mutations in people with epilepsy translate into presynaptic dysfunction and ultimately into seizure activity. The principal focus of these studies will be in vitro investigations of, 1) the biological role of these gene products and 2) how their dysfunction impacts SV recycling, using live fluorescence imaging of genetically-encoded reporters. The gene products to be discussed in more detail will be the SV protein SV2A, the protein kinase CDKL5 and the translation repressor FMRP.
Mechanisms to medicines in neurodegeneration
Dysregulation of protein synthesis both globally and locally in neurons and astrocytes is a key feature of neurodegenerative diseases. Aberrant signalling through the Unfolded Protein Response (UPR) and related Integrated Stress Response (ISR) have become major targets for neuroprotection in these disorders. In addition, other homeostatic mechanisms and stress responses, including the cold shock response, appear to regulate local translation and RNA splicing to control synapse maintenance and regeneration and can also be targeted therapeutically for neuroprotection. We have defined the role of UPR/ISR and the cold-shock response in neurodegenerative disorders and have developed translational strategies targeting them for new treatments for dementia.
Synapses, Shadows and Stress Contagion
Survival is predicated on the ability of an organism to respond to stress. The reliability of this response is ensured by a synaptic architecture that is relatively inflexible (i.e. hard-wired). Our work has shown that in naive animals, synapses on CRH neurons in the paraventricular nucleus of the hypothalamus are very reluctant to modification. If animals are stressed, however, these synapses become willing to learn. This seminar will focus on mechanisms linking acute stress to metaplastic changes at glutamate synapses, and also show how stress, and these synaptic changes can be transmitted from one individual to another.
NeurotechEU Summit
Our first NeurotechEU Summit will be fully digital and will take place on November 22th from 09:00 to 17:00 (CET). The final programme can be downloaded here. Hosted by the Karolinska Institutet, the summit will provide you an overview of our actions and achievements from the last year and introduce the priorities for the next year. You will also have the opportunity to attend the finals of the 3 minute thesis competition (3MT) organized by the Synapses Student Society, the student charter of NeurotechEU. Good luck to all the finalists: Lynn Le, Robin Noordhof, Adriana Gea González, Juan Carranza Valencia, Lea van Husen, Guoming (Tony) Man, Lilly Pitshaporn Leelaarporn, Cemre Su, Kaya Keleş, Ramazan Tarık Türksoy, Cristiana Tisca, Sara Bandiera, Irina Maria Vlad, Iulia Vadan, Borbála László, and David Papp! Don’t miss our keynote lecture, success stories and interactive discussions with Ms Vanessa Debiais Sainton (Head of Higher Education Unit, European Commission), Prof. Staffan Holmin (Karolinska Institutet), Dr Mohsen Kaboli (BMW Group, member of the NeurotechEU Associates Advisory Committee), and Prof. Peter Hagoort (Max Planck Institute for Psycholinguistics, Donders Institute). Would you like to use this opportunity to network? Please join our informal breakout sessions on Wonder.me at 11:40 CET. You will be able to move from one discussion group to another within 3 sessions: NeurotechEU ecosystem - The Associates Advisory Committee: Synergies in cross-sectoral initiatives Education next: Trans-European education and the European Universities Initiatives - Lessons learned thus far. Equality, diversity and inclusion at NeurotechEU: removing access barriers to education and developing a working, learning, and social environment where everyone is respected and valued. You can register for this free event at www.crowdcast.io/e/neurotecheu-summit
Synaptic plasticity controls the emergence of population-wide invariant representations in balanced network models
The intensity and features of sensory stimuli are encoded in the activity of neurons in the cortex. In the visual and piriform cortices, the stimulus intensity re-scales the activity of the population without changing its selectivity for the stimulus features. The cortical representation of the stimulus is therefore intensity-invariant. This emergence of network invariant representations appears robust to local changes in synaptic strength induced by synaptic plasticity, even though: i) synaptic plasticity can potentiate or depress connections between neurons in a feature-dependent manner, and ii) in networks with balanced excitation and inhibition, synaptic plasticity determines the non-linear network behavior. In this study, we investigate the consistency of invariant representations with a variety of synaptic states in balanced networks. By using mean-field models and spiking network simulations, we show how the synaptic state controls the emergence of intensity-invariant or intensity-dependent selectivity by inducing changes in the network response to intensity. In particular, we demonstrate how facilitating synaptic states can sharpen the network selectivity while depressing states broaden it. We also show how power-law-type synapses permit the emergence of invariant network selectivity and how this plasticity can be generated by a mix of different plasticity rules. Our results explain how the physiology of individual synapses is linked to the emergence of invariant representations of sensory stimuli at the network level.
The generation of cortical novelty responses through inhibitory plasticity
Animals depend on fast and reliable detection of novel stimuli in their environment. Neurons in multiple sensory areas respond more strongly to novel in comparison to familiar stimuli. Yet, it remains unclear which circuit, cellular, and synaptic mechanisms underlie those responses. Here, we show that spike-timing-dependent plasticity of inhibitory-to-excitatory synapses generates novelty responses in a recurrent spiking network model. Inhibitory plasticity increases the inhibition onto excitatory neurons tuned to familiar stimuli, while inhibition for novel stimuli remains low, leading to a network novelty response. The generation of novelty responses does not depend on the periodicity but rather on the distribution of presented stimuli. By including tuning of inhibitory neurons, the network further captures stimulus-specific adaptation. Finally, we suggest that disinhibition can control the amplification of novelty responses. Therefore, inhibitory plasticity provides a flexible, biologically plausible mechanism to detect the novelty of bottom-up stimuli, enabling us to make experimentally testable predictions.
Dendritic nonlinearities and synapse type-specific input clustering enable the development of input selectivity in a wide range of settings.
Bernstein Conference 2024
The distribution of synapse-relevant proteins along dendrite
Bernstein Conference 2024
Improving the Neuronal Classification Capacity with Nonlinear Parallel Synapses
Bernstein Conference 2024
Plastic Arbor: a modern simulation framework for synaptic plasticity – from single synapses to networks of morphological neurons
Bernstein Conference 2024
How the presynapse shapes its molecular composition in an energetically optimal manner
Bernstein Conference 2024
Activity-dependent dendrite growth through formation and removal of synapses
COSYNE 2022
Attractor neural networks with metastable synapses
COSYNE 2022
Neuromodulatory changes in the efficiency of information transmission at visual synapses
COSYNE 2022
Neuromodulatory changes in the efficiency of information transmission at visual synapses
COSYNE 2022
All-Optical Investigation of Schaller Collateral Synapses in vivo
COSYNE 2023
Familiarity-modulated synapses model cortical microcircuit novelty responses
COSYNE 2023
Learning beyond the synapse: activity-dependent myelination, neural correlations, and information transfer
COSYNE 2023
Parallel synapses with transmission nonlinearities increase the neuronal classification capacity
COSYNE 2023
Temporal pattern recognition in retinal ganglion cells is mediated by dynamical inhibitory synapses
COSYNE 2023
Glial ensheathment of inhibitory synapses drives hyperactivity and increases correlations
COSYNE 2025
2P-STED imaging of the microglial tripartite synapse in vivo
FENS Forum 2024
α-Synuclein propagation leads to synaptic abnormalities in the cortex through microglial synapse phagocytosis
FENS Forum 2024
Accumulation of phospho-alpha synuclein and oligomeric tau in presynapses in Parkinson’s disease and Dementia with Lewy Bodies
FENS Forum 2024
Activity-dependent plasticity of axo-axonic synapses across spatial scales
FENS Forum 2024
Adaptive decision-making requires RNF10-mediated synapse-to-nucleus signaling
FENS Forum 2024
The alanine-serine-cysteine-1 transporter (Asc1) provides glycine at fast inhibitory auditory brainstem synapses
FENS Forum 2024
Alteration of NMDA receptors in different excitatory synapses in the hippocampus of APP/PS1 transgenic mice
FENS Forum 2024
Alternative splicing of Cav2.1 EF-hand contributes to the tightness of calcium influx-neurotransmitter release coupling at mouse cerebellar synapses
FENS Forum 2024
Broken balance - Early impairment at inhibitory synapses in Alzheimer’s disease
FENS Forum 2024
CDKL5: A novel regulator of the post-synaptic complex at the inhibitory synapse
FENS Forum 2024
Cell type and synapse-specific definition of memory circuits in microbiota-deficient mice
FENS Forum 2024
Cellular and molecular characterization of serotonergic synapses in a mouse model of depression and raphe synucleinopathy
FENS Forum 2024
Cholinergic system and amyloid beta (Aβ) interplay at tripartite glutamatergic synapses in an alternative mouse model of Alzheimer’s disease
FENS Forum 2024
Compulsive-like seeking behavior correlates with AMPA receptor rectification in synapses of the subthalamic nucleus in a rat model of cocaine addiction
FENS Forum 2024
Defining the synapse-specific landscape of cell adhesion molecules in the fly visual system
FENS Forum 2024
Dense synapse-level reconstruction of brain tissue with super-resolution light microscopy
FENS Forum 2024
Differences in the frequency-dependency of LTP and LTD at lateral and medial perforant path synapses in rodent dentate gyrus reflect distinct roles in information encoding
FENS Forum 2024
Differential distribution of key regulatory ion channels in excitatory synapses of the epileptic human brain revealed by freeze-fracture replica analysis
FENS Forum 2024
Disentangling the spatial organization of the mossy fiber to granule cell synapse in the cerebellar cortex
FENS Forum 2024
Dissecting UBE3A-dependent regulation of synapse development
FENS Forum 2024
Distinct structural dynamics of CA1 inhibitory synapses in neuronal compartments during memory formation
FENS Forum 2024
Two distinct vesicle loading processes underlying delayed facilitation at excitatory synapses in prefrontal cortex
FENS Forum 2024
Dual roles of PirB on pre- and postsynapse in hippocampal asymmetry
FENS Forum 2024
The effect of amyloid-β on synapses depends on their AMPA and NMDA receptor subunit composition
FENS Forum 2024
Knocking out co-active plasticity rules in neural networks reveals synapse type-specific contributions for learning and memory
Bernstein Conference 2024