← Back

Synaptic Function

Topic spotlight
TopicWorld Wide

synaptic function

Discover seminars, jobs, and research tagged with synaptic function across World Wide.
20 curated items11 Seminars9 ePosters
Updated 10 months ago
20 items · synaptic function
20 results
SeminarNeuroscience

The synaptic functions of Alpha Synuclein and Lrrk2

Subhojit Roy, MD, PhD
University of Wisconsin-Madison
Feb 17, 2025

Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, followed by functional assays, will be presented.

SeminarNeuroscience

Molecular Logic of Synapse Organization and Plasticity

Tabrez Siddiqui
University of Manitoba
May 30, 2022

Connections between nerve cells called synapses are the fundamental units of communication and information processing in the brain. The accurate wiring of neurons through synapses into neural networks or circuits is essential for brain organization. Neuronal networks are sculpted and refined throughout life by constant adjustment of the strength of synaptic communication by neuronal activity, a process known as synaptic plasticity. Deficits in the development or plasticity of synapses underlie various neuropsychiatric disorders, including autism, schizophrenia and intellectual disability. The Siddiqui lab research program comprises three major themes. One, to assess how biochemical switches control the activity of synapse organizing proteins, how these switches act through their binding partners and how these processes are regulated to correct impaired synaptic function in disease. Two, to investigate how synapse organizers regulate the specificity of neuronal circuit development and how defined circuits contribute to cognition and behaviour. Three, to address how synapses are formed in the developing brain and maintained in the mature brain and how microcircuits formed by synapses are refined to fine-tune information processing in the brain. Together, these studies have generated fundamental new knowledge about neuronal circuit development and plasticity and enabled us to identify targets for therapeutic intervention.

SeminarNeuroscience

Synaptic health in Parkinson's Disease

Dayne Beccano-Kelly
Cardiff University
Aug 11, 2021

Parkinson's disease (PD) is the second most common neurodegenerative disorder, affecting 1% of over 65's; there is currently no effective treatment. Dopaminergic neuronal loss is hallmark in PD and yet despite decades of intensive research there is still no known therapeutic which will completely halt the disorder. As a result, identification of interventive therapies to reverse or prevent PD are essential. Using genetically faithful models (induced pluripotent stem cells and knock-in mice) of familial late onset PD (LRRK2 G2019S and GBA N370S) we have contributed to the literature that neuronal dysfunction precedes degeneration. Specifically, using whole cell patch clamp electrophysiology, biochemical, behavioural and molecular biological techniques, we have begun to investigate the fundamental processes that make neurons specialised i.e., synaptic function and neurotransmission. We illustrate those alterations to spontaneous neurotransmitter release, neuronal firing, and short-term plasticity as well as Ca2+ and energy dyshomeostasis, are some of the earliest observable pathological dysfunctions and are likely precursors to late-stage degeneration. These pathologies represent targets which can be manipulated to address causation, rather than the symptoms of the PD, and represent a marker that, if measurable in patients, could form the basis of early PD detection and intervention.

SeminarNeuroscience

Multi-scale synaptic analysis for psychiatric/emotional disorders

Akiko Hayashi-Takagi
RIKEN CBS
Jun 30, 2021

Dysregulation of emotional processing and its integration with cognitive functions are central features of many mental/emotional disorders associated both with externalizing problems (aggressive, antisocial behaviors) and internalizing problems (anxiety, depression). As Dr. Joseph LeDoux, our invited speaker of this program, wrote in his famous book “Synaptic self: How Our Brains Become Who We Are”—the brain’s synapses—are the channels through which we think, act, imagine, feel, and remember. Synapses encode the essence of personality, enabling each of us to function as a distinctive, integrated individual from moment to moment. Thus, exploring the functioning of synapses leads to the understanding of the mechanism of (patho)physiological function of our brain. In this context, we have investigated the pathophysiology of psychiatric disorders, with particular emphasis on the synaptic function of model mice of various psychiatric disorders such as schizophrenia, autism, depression, and PTSD. Our current interest is how synaptic inputs are integrated to generate the action potential. Because the spatiotemporal organization of neuronal firing is crucial for information processing, but how thousands of inputs to the dendritic spines drive the firing remains a central question in neuroscience. We identified a distinct pattern of synaptic integration in the disease-related models, in which extra-large (XL) spines generate NMDA spikes within these spines, which was sufficient to drive neuronal firing. We experimentally and theoretically observed that XL spines negatively correlated with working memory. Our work offers a whole new concept for dendritic computation and network dynamics, and the understanding of psychiatric research will be greatly reconsidered. The second half of my talk is the development of a novel synaptic tool. Because, no matter how beautifully we can illuminate the spine morphology and how accurately we can quantify the synaptic integration, the links between synapse and brain function remain correlational. In order to challenge the causal relationship between synapse and brain function, we established AS-PaRac1, which is unique not only because it can specifically label and manipulate the recently potentiated dendritic spine (Hayashi-Takagi et al, 2015, Nature). With use of AS-PaRac1, we developed an activity-dependent simultaneous labeling of the presynaptic bouton and the potentiated spines to establish “functional connectomics” in a synaptic resolution. When we apply this new imaging method for PTSD model mice, we identified a completely new functional neural circuit of brain region A→B→C with a very strong S/N in the PTSD model mice. This novel tool of “functional connectomics” and its photo-manipulation could open up new areas of emotional/psychiatric research, and by extension, shed light on the neural networks that determine who we are.

SeminarNeuroscience

Memory, learning to learn, and control of cognitive representations

André Fenton
New York University
May 6, 2021

Biological neural networks can represent information in the collective action potential discharge of neurons, and store that information amongst the synaptic connections between the neurons that both comprise the network and govern its function. The strength and organization of synaptic connections adjust during learning, but many cognitive neural systems are multifunctional, making it unclear how continuous activity alternates between the transient and discrete cognitive functions like encoding current information and recollecting past information, without changing the connections amongst the neurons. This lecture will first summarize our investigations of the molecular and biochemical mechanisms that change synaptic function to persistently store spatial memory in the rodent hippocampus. I will then report on how entorhinal cortex-hippocampus circuit function changes during cognitive training that creates memory, as well as learning to learn in mice. I will then describe how the hippocampus system operates like a competitive winner-take-all network, that, based on the dominance of its current inputs, self organizes into either the encoding or recollection information processing modes. We find no evidence that distinct cells are dedicated to those two distinct functions, rather activation of the hippocampus information processing mode is controlled by a subset of dentate spike events within the network of learning-modified, entorhinal-hippocampus excitatory and inhibitory synapses.

SeminarNeuroscienceRecording

Memory, learning to learn, and control of cognitive representations

André Fenton
New York University
May 6, 2021

Biological neural networks can represent information in the collective action potential discharge of neurons, and store that information amongst the synaptic connections between the neurons that both comprise the network and govern its function. The strength and organization of synaptic connections adjust during learning, but many cognitive neural systems are multifunctional, making it unclear how continuous activity alternates between the transient and discrete cognitive functions like encoding current information and recollecting past information, without changing the connections amongst the neurons. This lecture will first summarize our investigations of the molecular and biochemical mechanisms that change synaptic function to persistently store spatial memory in the rodent hippocampus. I will then report on how entorhinal cortex-hippocampus circuit function changes during cognitive training that creates memory, as well as learning to learn in mice. I will then describe how the hippocampus system operates like a competitive winner-take-all network, that, based on the dominance of its current inputs, self organizes into either the encoding or recollection information processing modes. We find no evidence that distinct cells are dedicated to those two distinct functions, rather activation of the hippocampus information processing mode is controlled by a subset of dentate spike events within the network of learning-modified, entorhinal-hippocampus excitatory and inhibitory synapses.

SeminarNeuroscience

How the immune system shapes synaptic functions

Michela Matteoli
Humanitas Research Hospital and CNR Institute of Neuroscience, Milano, Italy
Mar 15, 2021

The synapse is the core component of the nervous system and synapse formation is the critical step in the assembly of neuronal circuits. The assembly and maturation of synapses requires the contribution of secreted and membrane-associated proteins, with neuronal activity playing crucial roles in regulating synaptic strength, neuronal membrane properties, and neural circuit refinement. The molecular mechanisms of synapse assembly and refinement have been so far largely examined on a gene-by-gene basis and with a perspective fully centered on neuronal cells. However, in the last years, the involvement of non-neuronal cells has emerged. Among these, microglia, the resident immune cells of the central nervous system, have been shown to play a key role in synapse formation and elimination. Contacts of microglia with dendrites in the somatosensory cortex were found to induce filopodia and dendritic spines via Ca2+ and actin-dependent processes, while microglia-derived BDNF was shown to promote learning-dependent synapse formation. Microglia is also recognized to have a central role in the widespread elimination (or pruning) of exuberant synaptic connections during development. Clarifying the processes by which microglia control synapse homeostasis is essential to advance our current understanding of brain functions. Clear answers to these questions will have important implications for our understanding of brain diseases, as the fact that many psychiatric and neurological disorders are synaptopathies (i.e. diseases of the synapse) is now widely recognized. In the last years, my group has identified TREM2, an innate immune receptor with phagocytic and antiinflammatory properties expressed in brain exclusively by microglia, as essential for microglia-mediated synaptic refinement during the early stages of brain development. The talk will describe the role of TREM2 in synapse elimination and introduce the molecular actors involved. I will also describe additional pathways by which the immune system may affect the formation and homeostasis of synaptic contacts.

SeminarNeuroscienceRecording

On temporal coding in spiking neural networks with alpha synaptic function

Iulia M. Comsa
Google Research Zürich, Switzerland
Aug 30, 2020

The timing of individual neuronal spikes is essential for biological brains to make fast responses to sensory stimuli. However, conventional artificial neural networks lack the intrinsic temporal coding ability present in biological networks. We propose a spiking neural network model that encodes information in the relative timing of individual neuron spikes. In classification tasks, the output of the network is indicated by the first neuron to spike in the output layer. This temporal coding scheme allows the supervised training of the network with backpropagation, using locally exact derivatives of the postsynaptic spike times with respect to presynaptic spike times. The network operates using a biologically-plausible alpha synaptic transfer function. Additionally, we use trainable synchronisation pulses that provide bias, add flexibility during training and exploit the decay part of the alpha function. We show that such networks can be trained successfully on noisy Boolean logic tasks and on the MNIST dataset encoded in time. The results show that the spiking neural network outperforms comparable spiking models on MNIST and achieves similar quality to fully connected conventional networks with the same architecture. We also find that the spiking network spontaneously discovers two operating regimes, mirroring the accuracy-speed trade-off observed in human decision-making: a slow regime, where a decision is taken after all hidden neurons have spiked and the accuracy is very high, and a fast regime, where a decision is taken very fast but the accuracy is lower. These results demonstrate the computational power of spiking networks with biological characteristics that encode information in the timing of individual neurons. By studying temporal coding in spiking networks, we aim to create building blocks towards energy-efficient and more complex biologically-inspired neural architectures.

ePoster

A biallelic mutation in CACNA2D2 associated with epileptic encephalopathy affects calcium channel-dependent as well as synaptic functions of α2δ-2

Sabrin Haddad, Cornelia Ablinger, Ruslan Stanika, Manuel Hessenberger, Marta Campiglio, Nadine J. Ortner, Petronel Tuluc, Gerald J. Obermair

FENS Forum 2024

ePoster

CACNA1A haploinsufficiency leads to reduced synaptic function and increased intrinsic excitability

Marina Hommersom, Nina Doorn, Sofía Puvogel, Elly Lewerissa, Annika Mordelt, Ummi Ciptasari, Naoki Kogo, Monica Frega, Dirk Schubert, Bart van de Warrenburg, Nael Nadif Kasri, Hans van Bokhoven

FENS Forum 2024

ePoster

Differences in the synaptic function of human and murine alpha-synuclein

Jen Riba, Alexandra Stavsky, Daniel Gitler

FENS Forum 2024

ePoster

Distinct deficits drive NMDA receptor loss of synaptic function in G620R and G827R GRIN1 missense mouse models

Patrick Tidball, Jinyeol Lee, Jonathan Thacker, Shinwon Kang, Yeseul Lee, Fuzi Jin, John Georgiou, Graham L. Collingridge

FENS Forum 2024

ePoster

Hydroxynorketamine, but not ketamine, acts via α7 nicotinic acetylcholine receptor to control presynaptic function and gene expression

Debarpan Guhathakurta, Aneta Petrušková, Enes Yağız Akdaş, Bartomeu Perelló-Amorós, Renato Frischknecht, Daniela Anni, Eva-Maria Weiss, Martin Walter, Anna Fejtová

FENS Forum 2024

ePoster

The involvement of the RNA demethylase FTO in synaptic function

Lucia Perez-Benitez, Magdalena Natalia Wojtas, Poonam Verma, Shira Knafo

FENS Forum 2024

ePoster

Lysosomes and synapses: Investigating the role of lysosomal protein CLN3 in synaptic function and homeostasis

Masood Ahmad Wani, Benedikt Grünewald, Jakob von Engelhardt

FENS Forum 2024

ePoster

The role of Neurexin-1 alpha in inhibitory synaptic function and cortical excitation-inhibition balance

Martyna Panasiuk, Camille Hudon, Mizuki Tojo, Laura Andreae

FENS Forum 2024

ePoster

Shaping neocortical networks via maturation of synaptic functions in VIP-positive GABAergic interneurons

Clara Simacek, Sergei Kirischuk, Thomas Mittmann

FENS Forum 2024