Synaptic Vesicles
synaptic vesicles
How the presynapse forms and functions”
Nervous system function relies on the polarized architecture of neurons, established by directional transport of pre- and postsynaptic cargoes. While delivery of postsynaptic components depends on the secretory pathway, the identity of the membrane compartment(s) that supply presynaptic active zone (AZ) and synaptic vesicle (SV) proteins is largely unknown. I will discuss our recent advances in our understanding of how key components of the presynaptic machinery for neurotransmitter release are transported and assembled focussing on our studies in genome-engineered human induced pluripotent stem cell-derived neurons. Specifically, I will focus on the composition and cell biological identity of the axonal transport vesicles that shuttle key components of neurotransmission to nascent synapses and on machinery for axonal transport and its control by signaling lipids. Our studies identify a crucial mechanism mediating the delivery of SV and active zone proteins to developing synapses and reveal connections to neurological disorders. In the second part of my talk, I will discuss how exocytosis and endocytosis are coupled to maintain presynaptic membrane homeostasis. I will present unpublished data regarding the role of membrane tension in the coupling of exocytosis and endocytosis at synapses. We have identified an endocytic BAR domain protein that is capable of sensing alterations in membrane tension caused by the exocytotic fusion of SVs to initiate compensatory endocytosis to restore plasma membrane area. Interference with this mechanism results in defects in the coupling of presynaptic exocytosis and SV recycling at human synapses.
Computational modelling of neurotransmitter release
Synaptic transmission provides the basis for neuronal communication. When an action-potential propagates through the axonal arbour, it activates voltage-gated Ca2+ channels located in the vicinity of release-ready synaptic vesicles docked at the presynaptic active zone. Ca2+ ions enter the presynaptic terminal and activate the vesicular Ca2+ sensor, thereby triggering neurotransmitter release. This whole process occurs on a timescale of a few milliseconds. In addition to fast, synchronous release, which keeps pace with action potentials, many synapses also exhibit delayed asynchronous release that persists for tens to hundreds of milliseconds. In this talk I will demonstrate how experimentally constrained computational modelling of underlying biological processes can complement laboratory studies (using electrophysiology and imaging techniques) and provide insights into the mechanisms of synaptic transmission.
Dysfunctional synaptic vesicle recycling – links to epilepsy
Accurate and synchronous neurotransmitter release is essential for brain communication and occurs when neurotransmitter-containing synaptic vesicles (SVs) fuse to release their content in response to neuronal activity. Neurotransmission is sustained by the process of SV recycling, which generates SVs locally at the presynapse. Until relatively recently it was believed that most mutations in genes that were essential for SV recycling would be incompatible with life, due to this fundamental role. However, this is not the case, with mutations in essential genes for SV fusion, retrieval and recycling identified in individuals with epilepsy. This seminar will cover our laboratory’s progress in determining how genetic mutations in people with epilepsy translate into presynaptic dysfunction and ultimately into seizure activity. The principal focus of these studies will be in vitro investigations of, 1) the biological role of these gene products and 2) how their dysfunction impacts SV recycling, using live fluorescence imaging of genetically-encoded reporters. The gene products to be discussed in more detail will be the SV protein SV2A, the protein kinase CDKL5 and the translation repressor FMRP.
Translational upregulation of STXBP1 by non-coding RNAs as an innovative treatment for STXBP1 encephalopathy
Developmental and epileptic encephalopathies (DEEs) are a broad spectrum of genetic epilepsies associated with impaired neurological development as a direct consequence of a genetic mutation, in addition to the effect of the frequent epileptic activity on brain. Compelling genetic studies indicate that heterozygous de novo mutations represent the most common underlying genetic mechanism, in accordance with the sporadic presentation of DEE. De novo mutations may exert a loss-of-function (LOF) on the protein by decrementing expression level and/or activity, leading to functional haploinsufficiency. These diseases share several features: severe and frequent refractory seizures, diffusely abnormal background activity on EEG, intellectual disability often profound, and severe consequences on global development. One of major causes of early onset DEE are de novo heterozygous mutations in syntaxin-binding-protein-1 gene STXBP1, which encodes a membrane trafficking protein playing critical role in vesicular docking and fusion. LOF STXBP1 mutations lead to a failure of neurotransmitter secretion from synaptic vesicles. Core clinical features of STXBP1 encephalopathy include early-onset epilepsy with hypsarrhythmic EEG, or burst-suppression pattern, or multifocal epileptiform activity. Seizures are often resistant to standard treatments and patients typically show intellectual disability, mostly severe to profound. Additional neurologic features may include autistic traits, movement disorders (dyskinesia, dystonia, tremor), axial hypotonia, and ataxia, indicating a broader neurologic impairment. Patients with severe neuro-cognitive features but without epilepsy have been reported. Recently, a new class of natural and synthetic non-coding RNAs have been identified, enabling upregulation of protein translation in a gene-specific way (SINEUPs), without any increase in mRNA of the target gene. SINEUPs are translational activators composed by a Binding Domain (BD) that overlaps, in antisense orientation, to the sense protein-coding mRNA, and determines target selection; and an Effector Domain (ED), that is essential for protein synthesis up regulation. SINEUPs have been shown to restore the physiological expression of a protein in case of haploinsufficiency, without driving excessive overexpression out of the physiological range. This technology brings many advantages, as it mainly acts on endogenous target mRNAs produced in situ by the wild-type allele; this action is limited to mRNA under physiological regulation, therefore no off-site effects can be expected in cells and tissues that do not express the target transcript; by acting only on a posttranscriptional level, SINEUPs do not trigger hereditable genome editing. After bioinformatic analysis of the promoter region of interest, we designed SINEUPs with 3 different BD for STXBP1. Human neurons from iPSCs were treated and STXBP1 levels showed a 1.5-fold increase compared to the Negative control. RNA levels of STXBP1 after the administration of SINEUPs remained stable as expected. These preliminary results proved the SINEUPs potential to specifically increase the protein levels without impacting on the genome. This is an extremely flexible approach to target many developmental and epileptic encephalopathies caused by haploinsufficiency, and therefore to address these diseases in a more tailored and radical way.
Physiological importance of phase separation: a case study in synapse formation
Synapse formation during neuronal development is critical to establish neural circuits and a nervous system1. Every presynapse builds a core active zone structure where ion channels are clustered and synaptic vesicles are released2. While the composition of active zones is well characterized2,3, how active zone proteins assemble together and recruit synaptic release machinery during development is not clear. Here, we find core active zone scaffold proteins SYD-2/Liprin-α and ELKS-1 phase separate during an early stage of synapse development, and later mature into a solid structure. We directly test the in vivo function of phase separation with mutants specifically lacking this activity. These mutant SYD-2 and ELKS-1 proteins remain enriched at synapses, but are defective in active zone assembly and synapse function. The defects are rescued with the introduction of a phase separation motif from an unrelated protein. In vitro, we reconstitute the SYD-2 and ELKS-1 liquid phase scaffold and find it is competent to bind and incorporate downstream active zone components. The fluidity of SYD-2 and ELKS-1 condensates is critical for efficient mixing and incorporation of active zone components. These data reveal that a developmental liquid phase of scaffold molecules is essential for synaptic active zone assembly before maturation into a stable final structure.
Nanoscopic distribution of VAMP2 and VAMP7 in striatal cholinergic varicosities and their respective localization with VAChT and VGLUT3 in synaptic vesicles
FENS Forum 2024
Synapsin 2a tetramerisation selectively controls the nanoscale clustering of reserve synaptic vesicles at the hippocampal presynapse
FENS Forum 2024