← Back

Task Demand

Topic spotlight
TopicWorld Wide

task demand

Discover seminars, jobs, and research tagged with task demand across World Wide.
8 curated items6 Seminars2 ePosters
Updated about 1 year ago
8 items · task demand
8 results
SeminarNeuroscienceRecording

Principles of Cognitive Control over Task Focus and Task

Tobias Egner
Duke University, USA
Sep 10, 2024

2024 BACN Mid-Career Prize Lecture Adaptive behavior requires the ability to focus on a current task and protect it from distraction (cognitive stability), and to rapidly switch tasks when circumstances change (cognitive flexibility). How people control task focus and switch-readiness has therefore been the target of burgeoning research literatures. Here, I review and integrate these literatures to derive a cognitive architecture and functional rules underlying the regulation of stability and flexibility. I propose that task focus and switch-readiness are supported by independent mechanisms whose strategic regulation is nevertheless governed by shared principles: both stability and flexibility are matched to anticipated challenges via an incremental, online learner that nudges control up or down based on the recent history of task demands (a recency heuristic), as well as via episodic reinstatement when the current context matches a past experience (a recognition heuristic).

SeminarNeuroscience

Vocal emotion perception at millisecond speed

Ana Pinehiro
University of Lisbon
Oct 16, 2023

The human voice is possibly the most important sound category in the social landscape. Compared to other non-verbal emotion signals, the voice is particularly effective in communicating emotions: it can carry information over large distances and independent of sight. However, the study of vocal emotion expression and perception is surprisingly far less developed than the study of emotion in faces. Thereby, its neural and functional correlates remain elusive. As the voice represents a dynamically changing auditory stimulus, temporally sensitive techniques such as the EEG are particularly informative. In this talk, the dynamic neurocognitive operations that take place when we listen to vocal emotions will be specified, with a focus on the effects of stimulus type, task demands, and speaker and listener characteristics (e.g., age). These studies suggest that emotional voice perception is not only a matter of how one speaks but also of who speaks and who listens. Implications of these findings for the understanding of psychiatric disorders such as schizophrenia will be discussed.

SeminarNeuroscience

Chemistry of the adaptive mind: lessons from dopamine

Roshan Cools, PhD
Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Department of ...
Jun 13, 2022

The human brain faces a variety of computational dilemmas, including the flexibility/stability, the speed/accuracy and the labor/leisure tradeoff. I will argue that striatal dopamine is particularly well suited to dynamically regulate these computational tradeoffs depending on constantly changing task demands. This working hypothesis is grounded in evidence from recent studies on learning, motivation and cognitive control in human volunteers, using chemical PET, psychopharmacology, and/or fMRI. These studies also begin to elucidate the mechanisms underlying the huge variability in catecholaminergic drug effects across different individuals and across different task contexts. For example, I will demonstrate how effects of the most commonly used psychostimulant methylphenidate on learning, Pavlovian and effortful instrumental control depend on fluctuations in current environmental volatility, on individual differences in working memory capacity and on opportunity cost respectively.

SeminarNeuroscience

Dynamic maps of a dynamic world

Alexandra Keinath
McGill University
Oct 17, 2021

Extensive research has revealed that the hippocampus and entorhinal cortex maintain a rich representation of space through the coordinated activity of place cells, grid cells, and other spatial cell types. Frequently described as a ‘cognitive map’ or a ‘hippocampal map’, these maps are thought to support episodic memory through their instantiation and retrieval. Though often a useful and intuitive metaphor, a map typically evokes a static representation of the external world. However, the world itself, and our experience of it, are intrinsically dynamic. In order to make the most of their maps, a navigator must be able to adapt to, incorporate, and overcome these dynamics. Here I describe three projects where we address how hippocampal and entorhinal representations do just that. In the first project, I describe how boundaries dynamically anchor entorhinal grid cells and human spatial memory alike when the shape of a familiar environment is changed. In the second project, I describe how the hippocampus maintains a representation of the recent past even in the absence of disambiguating sensory and explicit task demands, a representation which causally depends on intrinsic hippocampal circuitry. In the third project, I describe how the hippocampus preserves a stable representation of context despite ongoing representational changes across a timescale of weeks. Together, these projects highlight the dynamic and adaptive nature of our hippocampal and entorhinal representations, and set the stage for future work building on these techniques and paradigms.

SeminarNeuroscience

Cholinergic regulation of learning in the olfactory system

Christiane Linster
Cornell University
Jul 8, 2020

In the olfactory system, cholinergic modulation has been associated with contrast modulation and changes in receptive fields in the olfactory bulb, as well the learning of odor associations in the olfactory cortex. Computational modeling and behavioral studies suggest that cholinergic modulation could improve sensory processing and learning while preventing pro-active interference when task demands are high. However, how sensory inputs and/or learning regulate incoming modulation has not yet been elucidated. We here use a computational model of the olfactory bulb, piriform cortex (PC) and horizontal limb of the diagonal band of Broca (HDB) to explore how olfactory learning could regulate cholinergic inputs to the system in a closed feedback loop. In our model, the novelty of an odor is reflected in firing rates and sparseness of cortical neurons in response to that odor and these firing rates can directly regulate learning in the system by modifying cholinergic inputs to the system.

ePoster

Task demands drive choice of navigation strategy and distinct types of spatial representations

COSYNE 2022

ePoster

Task demands drive choice of navigation strategy and distinct types of spatial representations

COSYNE 2022