Topic spotlight
TopicWorld Wide

TBD

Discover seminars, jobs, and research tagged with TBD across World Wide.
22 curated items22 Seminars
Updated 11 months ago
22 items · TBD
22 results
SeminarNeuroscience

TBD

Oscar Marin, PhD
King's College London
Jan 20, 2025
SeminarNeuroscience

Untitled Seminar

Alicia Izquierdo
UCLA
Apr 18, 2024
SeminarNeuroscience

Learning representations of specifics and generalities over time

Anna Schapiro
University of Pennsylvania
Apr 11, 2024

There is a fundamental tension between storing discrete traces of individual experiences, which allows recall of particular moments in our past without interference, and extracting regularities across these experiences, which supports generalization and prediction in similar situations in the future. One influential proposal for how the brain resolves this tension is that it separates the processes anatomically into Complementary Learning Systems, with the hippocampus rapidly encoding individual episodes and the neocortex slowly extracting regularities over days, months, and years. But this does not explain our ability to learn and generalize from new regularities in our environment quickly, often within minutes. We have put forward a neural network model of the hippocampus that suggests that the hippocampus itself may contain complementary learning systems, with one pathway specializing in the rapid learning of regularities and a separate pathway handling the region’s classic episodic memory functions. This proposal has broad implications for how we learn and represent novel information of specific and generalized types, which we test across statistical learning, inference, and category learning paradigms. We also explore how this system interacts with slower-learning neocortical memory systems, with empirical and modeling investigations into how the hippocampus shapes neocortical representations during sleep. Together, the work helps us understand how structured information in our environment is initially encoded and how it then transforms over time.

SeminarNeuroscience

Roles of inhibition in stabilizing and shaping the response of cortical networks

Nicolas Brunel
Duke University
Apr 4, 2024

Inhibition has long been thought to stabilize the activity of cortical networks at low rates, and to shape significantly their response to sensory inputs. In this talk, I will describe three recent collaborative projects that shed light on these issues. (1) I will show how optogenetic excitation of inhibition neurons is consistent with cortex being inhibition stabilized even in the absence of sensory inputs, and how this data can constrain the coupling strengths of E-I cortical network models. (2) Recent analysis of the effects of optogenetic excitation of pyramidal cells in V1 of mice and monkeys shows that in some cases this optogenetic input reshuffles the firing rates of neurons of the network, leaving the distribution of rates unaffected. I will show how this surprising effect can be reproduced in sufficiently strongly coupled E-I networks. (3) Another puzzle has been to understand the respective roles of different inhibitory subtypes in network stabilization. Recent data reveal a novel, state dependent, paradoxical effect of weakening AMPAR mediated synaptic currents onto SST cells. Mathematical analysis of a network model with multiple inhibitory cell types shows that this effect tells us in which conditions SST cells are required for network stabilization.

SeminarNeuroscience

Visual mechanisms for flexible behavior

Marlene Cohen
University of Chicago
Jan 25, 2024

Perhaps the most impressive aspect of the way the brain enables us to act on the sensory world is its flexibility. We can make a general inference about many sensory features (rating the ripeness of mangoes or avocados) and map a single stimulus onto many choices (slicing or blending mangoes). These can be thought of as flexibly mapping many (features) to one (inference) and one (feature) to many (choices) sensory inputs to actions. Both theoretical and experimental investigations of this sort of flexible sensorimotor mapping tend to treat sensory areas as relatively static. Models typically instantiate flexibility through changing interactions (or weights) between units that encode sensory features and those that plan actions. Experimental investigations often focus on association areas involved in decision-making that show pronounced modulations by cognitive processes. I will present evidence that the flexible formatting of visual information in visual cortex can support both generalized inference and choice mapping. Our results suggest that visual cortex mediates many forms of cognitive flexibility that have traditionally been ascribed to other areas or mechanisms. Further, we find that a primary difference between visual and putative decision areas is not what information they encode, but how that information is formatted in the responses of neural populations, which is related to difference in the impact of causally manipulating different areas on behavior. This scenario allows for flexibility in the mapping between stimuli and behavior while maintaining stability in the information encoded in each area and in the mappings between groups of neurons.

SeminarNeuroscience

Neuronal population interactions between brain areas

Byron Yu
Carnegie Mellon University
Dec 7, 2023

Most brain functions involve interactions among multiple, distinct areas or nuclei. Yet our understanding of how populations of neurons in interconnected brain areas communicate is in its infancy. Using a population approach, we found that interactions between early visual cortical areas (V1 and V2) occur through a low-dimensional bottleneck, termed a communication subspace. In this talk, I will focus on the statistical methods we have developed for studying interactions between brain areas. First, I will describe Delayed Latents Across Groups (DLAG), designed to disentangle concurrent, bi-directional (i.e., feedforward and feedback) interactions between areas. Second, I will describe an extension of DLAG applicable to three or more areas, and demonstrate its utility for studying simultaneous Neuropixels recordings in areas V1, V2, and V3. Our results provide a framework for understanding how neuronal population activity is gated and selectively routed across brain areas.

SeminarNeuroscience

Modeling the Navigational Circuitry of the Fly

Larry Abbott
Columbia University
Nov 30, 2023

Navigation requires orienting oneself relative to landmarks in the environment, evaluating relevant sensory data, remembering goals, and convert all this information into motor commands that direct locomotion. I will present models, highly constrained by connectomic, physiological and behavioral data, for how these functions are accomplished in the fly brain.

SeminarNeuroscience

Prefrontal mechanisms involved in learning distractor-resistant working memory in a dual task

Albert Compte
IDIBAPS
Nov 16, 2023

Working memory (WM) is a cognitive function that allows the short-term maintenance and manipulation of information when no longer accessible to the senses. It relies on temporarily storing stimulus features in the activity of neuronal populations. To preserve these dynamics from distraction it has been proposed that pre and post-distraction population activity decomposes into orthogonal subspaces. If orthogonalization is necessary to avoid WM distraction, it should emerge as performance in the task improves. We sought evidence of WM orthogonalization learning and the underlying mechanisms by analyzing calcium imaging data from the prelimbic (PrL) and anterior cingulate (ACC) cortices of mice as they learned to perform an olfactory dual task. The dual task combines an outer Delayed Paired-Association task (DPA) with an inner Go-NoGo task. We examined how neuronal activity reflected the process of protecting the DPA sample information against Go/NoGo distractors. As mice learned the task, we measured the overlap between the neural activity onto the low-dimensional subspaces that encode sample or distractor odors. Early in the training, pre-distraction activity overlapped with both sample and distractor subspaces. Later in the training, pre-distraction activity was strictly confined to the sample subspace, resulting in a more robust sample code. To gain mechanistic insight into how these low-dimensional WM representations evolve with learning we built a recurrent spiking network model of excitatory and inhibitory neurons with low-rank connections. The model links learning to (1) the orthogonalization of sample and distractor WM subspaces and (2) the orthogonalization of each subspace with irrelevant inputs. We validated (1) by measuring the angular distance between the sample and distractor subspaces through learning in the data. Prediction (2) was validated in PrL through the photoinhibition of ACC to PrL inputs, which induced early-training neural dynamics in well-trained animals. In the model, learning drives the network from a double-well attractor toward a more continuous ring attractor regime. We tested signatures for this dynamical evolution in the experimental data by estimating the energy landscape of the dynamics on a one-dimensional ring. In sum, our study defines network dynamics underlying the process of learning to shield WM representations from distracting tasks.

SeminarNeuroscience

Identifying mechanisms of cognitive computations from spikes

Tatiana Engel
Princeton
Nov 2, 2023

Higher cortical areas carry a wide range of sensory, cognitive, and motor signals supporting complex goal-directed behavior. These signals mix in heterogeneous responses of single neurons, making it difficult to untangle underlying mechanisms. I will present two approaches for revealing interpretable circuit mechanisms from heterogeneous neural responses during cognitive tasks. First, I will show a flexible nonparametric framework for simultaneously inferring population dynamics on single trials and tuning functions of individual neurons to the latent population state. When applied to recordings from the premotor cortex during decision-making, our approach revealed that populations of neurons encoded the same dynamic variable predicting choices, and heterogeneous firing rates resulted from the diverse tuning of single neurons to this decision variable. The inferred dynamics indicated an attractor mechanism for decision computation. Second, I will show an approach for inferring an interpretable network model of a cognitive task—the latent circuit—from neural response data. We developed a theory to causally validate latent circuit mechanisms via patterned perturbations of activity and connectivity in the high-dimensional network. This work opens new possibilities for deriving testable mechanistic hypotheses from complex neural response data.

SeminarNeuroscience

A recurrent network model of planning predicts hippocampal replay and human behavior

Marcelo Mattar
NYU
Oct 19, 2023

When interacting with complex environments, humans can rapidly adapt their behavior to changes in task or context. To facilitate this adaptation, we often spend substantial periods of time contemplating possible futures before acting. For such planning to be rational, the benefits of planning to future behavior must at least compensate for the time spent thinking. Here we capture these features of human behavior by developing a neural network model where not only actions, but also planning, are controlled by prefrontal cortex. This model consists of a meta-reinforcement learning agent augmented with the ability to plan by sampling imagined action sequences drawn from its own policy, which we refer to as `rollouts'. Our results demonstrate that this agent learns to plan when planning is beneficial, explaining the empirical variability in human thinking times. Additionally, the patterns of policy rollouts employed by the artificial agent closely resemble patterns of rodent hippocampal replays recently recorded in a spatial navigation task, in terms of both their spatial statistics and their relationship to subsequent behavior. Our work provides a new theory of how the brain could implement planning through prefrontal-hippocampal interactions, where hippocampal replays are triggered by -- and in turn adaptively affect -- prefrontal dynamics.

SeminarNeuroscience

The role of sub-population structure in computations through neural dynamics

Srdjan Ostojic
École normale supérieure
May 18, 2023

Neural computations are currently conceptualised using two separate approaches: sorting neurons into functional sub-populations or examining distributed collective dynamics. Whether and how these two aspects interact to shape computations is currently unclear. Using a novel approach to extract computational mechanisms from recurrent networks trained on neuroscience tasks, we show that the collective dynamics and sub-population structure play fundamentally complementary roles. Although various tasks can be implemented in networks with fully random population structure, we found that flexible input–output mappings instead require a non-random population structure that can be described in terms of multiple sub-populations. Our analyses revealed that such a sub-population organisation enables flexible computations through a mechanism based on gain-controlled modulations that flexibly shape the collective dynamics.

SeminarNeuroscience

Distinct contributions of different anterior frontal regions to rule-guided decision-making in primates: complementary evidence from lesions, electrophysiology, and neurostimulation

Mark Buckley
Oxford University
May 4, 2023

Different prefrontal areas contribute in distinctly different ways to rule-guided behaviour in the context of a Wisconsin Card Sorting Test (WCST) analog for macaques. For example, causal evidence from circumscribed lesions in NHPs reveals that dorsolateral prefrontal cortex (dlPFC) is necessary to maintain a reinforced abstract rule in working memory, orbitofrontal cortex (OFC) is needed to rapidly update representations of rule value, and the anterior cingulate cortex (ACC) plays a key role in cognitive control and integrating information for correct and incorrect trials over recent outcomes. Moreover, recent lesion studies of frontopolar cortex (FPC) suggest it contributes to representing the relative value of unchosen alternatives, including rules. Yet we do not understand how these functional specializations relate to intrinsic neuronal activities nor the extent to which these neuronal activities differ between different prefrontal regions. After reviewing the aforementioned causal evidence I will present our new data from studies using multi-area multi-electrode recording techniques in NHPs to simultaneously record from four different prefrontal regions implicated in rule-guided behaviour. Multi-electrode micro-arrays (‘Utah arrays’) were chronically implanted in dlPFC, vlPFC, OFC, and FPC of two macaques, allowing us to simultaneously record single and multiunit activity, and local field potential (LFP), from all regions while the monkey performs the WCST analog. Rule-related neuronal activity was widespread in all areas recorded but it differed in degree and in timing between different areas. I will also present preliminary results from decoding analyses applied to rule-related neuronal activities both from individual clusters and also from population measures. These results confirm and help quantify dynamic task-related activities that differ between prefrontal regions. We also found task-related modulation of LFPs within beta and gamma bands in FPC. By combining this correlational recording methods with trial-specific causal interventions (electrical microstimulation) to FPC we could significantly enhance and impair animals performance in distinct task epochs in functionally relevant ways, further consistent with an emerging picture of regional functional specialization within a distributed framework of interacting and interconnected cortical regions.

SeminarNeuroscience

Learning through the eyes and ears of a child

Brenden Lake
NYU
Apr 20, 2023

Young children have sophisticated representations of their visual and linguistic environment. Where do these representations come from? How much knowledge arises through generic learning mechanisms applied to sensory data, and how much requires more substantive (possibly innate) inductive biases? We examine these questions by training neural networks solely on longitudinal data collected from a single child (Sullivan et al., 2020), consisting of egocentric video and audio streams. Our principal findings are as follows: 1) Based on visual only training, neural networks can acquire high-level visual features that are broadly useful across categorization and segmentation tasks. 2) Based on language only training, networks can acquire meaningful clusters of words and sentence-level syntactic sensitivity. 3) Based on paired visual and language training, networks can acquire word-referent mappings from tens of noisy examples and align their multi-modal conceptual systems. Taken together, our results show how sophisticated visual and linguistic representations can arise through data-driven learning applied to one child’s first-person experience.

SeminarNeuroscience

The Neural Race Reduction: Dynamics of nonlinear representation learning in deep architectures

Andrew Saxe
UCL
Apr 13, 2023

What is the relationship between task, network architecture, and population activity in nonlinear deep networks? I will describe the Gated Deep Linear Network framework, which schematizes how pathways of information flow impact learning dynamics within an architecture. Because of the gating, these networks can compute nonlinear functions of their input. We derive an exact reduction and, for certain cases, exact solutions to the dynamics of learning. The reduction takes the form of a neural race with an implicit bias towards shared representations, which then govern the model’s ability to systematically generalize, multi-task, and transfer. We show how appropriate network architectures can help factorize and abstract knowledge. Together, these results begin to shed light on the links between architecture, learning dynamics and network performance.

SeminarNeuroscience

Relations and Predictions in Brains and Machines

Kim Stachenfeld
Deepmind
Apr 6, 2023

Humans and animals learn and plan with flexibility and efficiency well beyond that of modern Machine Learning methods. This is hypothesized to owe in part to the ability of animals to build structured representations of their environments, and modulate these representations to rapidly adapt to new settings. In the first part of this talk, I will discuss theoretical work describing how learned representations in hippocampus enable rapid adaptation to new goals by learning predictive representations, while entorhinal cortex compresses these predictive representations with spectral methods that support smooth generalization among related states. I will also cover recent work extending this account, in which we show how the predictive model can be adapted to the probabilistic setting to describe a broader array of generalization results in humans and animals, and how entorhinal representations can be modulated to support sample generation optimized for different behavioral states. In the second part of the talk, I will overview some of the ways in which we have combined many of the same mathematical concepts with state-of-the-art deep learning methods to improve efficiency and performance in machine learning applications like physical simulation, relational reasoning, and design.

SeminarNeuroscience

Analyzing artificial neural networks to understand the brain

Grace Lindsay
NYU
Dec 15, 2022

In the first part of this talk I will present work showing that recurrent neural networks can replicate broad behavioral patterns associated with dynamic visual object recognition in humans. An analysis of these networks shows that different types of recurrence use different strategies to solve the object recognition problem. The similarities between artificial neural networks and the brain presents another opportunity, beyond using them just as models of biological processing. In the second part of this talk, I will discuss—and solicit feedback on—a proposed research plan for testing a wide range of analysis tools frequently applied to neural data on artificial neural networks. I will present the motivation for this approach as well as the form the results could take and how this would benefit neuroscience.

SeminarNeuroscience

Neural Dynamics of Cognitive Control

Tim Buschman
Princeton
Dec 1, 2022

Cognitive control guides behavior by controlling what, where, and how information is represented in the brain. Perhaps the most well-studied form of cognitive control has been ‘attention’, which controls how external sensory stimuli are represented in the brain. In contrast, the neural mechanisms controlling the selection of representations held ‘in mind’, in working memory, are unknown. In this talk, I will present evidence that the prefrontal cortex controls working memory by selectively enhancing and transforming the contents of working memory. In particular, I will show how the neural representation of the content of working memory changes over time, moving between different ‘subspaces’ of the neural population. These dynamics may play a critical role in controlling what and how neural representations are acted upon.

SeminarNeuroscience

Mapping learning and decision-making algorithms onto brain circuitry

Ilana Witten
Princeton
Nov 17, 2022

In the first half of my talk, I will discuss our recent work on the midbrain dopamine system. The hypothesis that midbrain dopamine neurons broadcast an error signal for the prediction of reward is among the great successes of computational neuroscience. However, our recent results contradict a core aspect of this theory: that the neurons uniformly convey a scalar, global signal. I will review this work, as well as our new efforts to update models of the neural basis of reinforcement learning with our data. In the second half of my talk, I will discuss our recent findings of state-dependent decision-making mechanisms in the striatum.

SeminarNeuroscience

Signal in the Noise: models of inter-trial and inter-subject neural variability

Alex Williams
NYU/Flatiron
Nov 3, 2022

The ability to record large neural populations—hundreds to thousands of cells simultaneously—is a defining feature of modern systems neuroscience. Aside from improved experimental efficiency, what do these technologies fundamentally buy us? I'll argue that they provide an exciting opportunity to move beyond studying the "average" neural response. That is, by providing dense neural circuit measurements in individual subjects and moments in time, these recordings enable us to track changes across repeated behavioral trials and across experimental subjects. These two forms of variability are still poorly understood, despite their obvious importance to understanding the fidelity and flexibility of neural computations. Scientific progress on these points has been impeded by the fact that individual neurons are very noisy and unreliable. My group is investigating a number of customized statistical models to overcome this challenge. I will mention several of these models but focus particularly on a new framework for quantifying across-subject similarity in stochastic trial-by-trial neural responses. By applying this method to noisy representations in deep artificial networks and in mouse visual cortex, we reveal that the geometry of neural noise correlations is a meaningful feature of variation, which is neglected by current methods (e.g. representational similarity analysis).

SeminarPhysics of Life

TBD

Guillaume Salbreux, Danijela Vignjevic, Aurelien Roux, Daniel Sussman
Multiple
Jan 19, 2021
SeminarPhysics of Life

TBD

Dr. Egle Cekanaviciute and Dr. Gary Strangman
NASA and Massachusetts General Hospital
Dec 3, 2020