← Back

Technology

Topic spotlight
TopicWorld Wide

technology

Discover seminars, jobs, and research tagged with technology across World Wide.
68 curated items60 Seminars6 ePosters2 Positions
Updated 1 day ago
68 items · technology
68 results
Position

N/A

Heyns
Nationwide
Dec 5, 2025

FAA™ VaultMesh Brand Deployment — Developer Required. We are building a mass-scale HTML deployment system for a sovereign economic network called FAA™. The system includes over 80 brands under the Housing & Infrastructure sector, with 4 subnodes per brand and 12 HTML pages per node — totaling 3,840 FAA-compliant web pages. Your Role: You will be responsible for: Setting up a Cloudflare Workers deployment pipeline, Building out 12 FAA-standard pages per brand subnode (index.html, dashboard.html, pricing.html, etc.), Maintaining the FAA.zone public structure, especially under /sectors/housing/..., Integrating with existing admin panels at /admin/admin-portal.html and /admin/admin-portal-approval.html, Ensuring all files match Shapely visual styling (we will provide templates).

SeminarNeuroscience

Functional Imaging of the Human Brain: A Window into the Organization of the Human Mind

Nancy Kanwisher
Massachusetts Institute of Technology & McGovern Institute for Brain Research
Jun 25, 2025
SeminarNeuroscience

Neural control of internal affective states”

David J. Anderson
California Institute of Technology, Tianqiao and Chrissy Chen Institute for Neuroscience, California, USA
Jun 18, 2025
SeminarNeuroscience

“Development and application of gaze control models for active perception”

Prof. Bert Shi
Professor of Electronic and Computer Engineering at the Hong Kong University of Science and Technology (HKUST)
Jun 11, 2025

Gaze shifts in humans serve to direct high-resolution vision provided by the fovea towards areas in the environment. Gaze can be considered a proxy for attention or indicator of the relative importance of different parts of the environment. In this talk, we discuss the development of generative models of human gaze in response to visual input. We discuss how such models can be learned, both using supervised learning and using implicit feedback as an agent interacts with the environment, the latter being more plausible in biological agents. We also discuss two ways such models can be used. First, they can be used to improve the performance of artificial autonomous systems, in applications such as autonomous navigation. Second, because these models are contingent on the human’s task, goals, and/or state in the context of the environment, observations of gaze can be used to infer information about user intent. This information can be used to improve human-machine and human robot interaction, by making interfaces more anticipative. We discuss example applications in gaze-typing, robotic tele-operation and human-robot interaction.

SeminarOpen Source

Open Hardware Microfluidics

Vittorio Saggiomo
Associate Professor, Laboratory of BioNanoTechnology, Wageningen University, The Netherlands
Jun 5, 2025

What’s the point of having scientific and technological innovations when only a few can benefit from them? How can we make science more inclusive? Those questions are always in the back of my mind when we perform research in our laboratory, and we have a strong focus on the scientific accessibility of our developed methods from microfabrication to sensor development.

SeminarNeuroscience

Harnessing Big Data in Neuroscience: From Mapping Brain Connectivity to Predicting Traumatic Brain Injury

Franco Pestilli
University of Texas, Austin, USA
May 12, 2025

Neuroscience is experiencing unprecedented growth in dataset size both within individual brains and across populations. Large-scale, multimodal datasets are transforming our understanding of brain structure and function, creating opportunities to address previously unexplored questions. However, managing this increasing data volume requires new training and technology approaches. Modern data technologies are reshaping neuroscience by enabling researchers to tackle complex questions within a Ph.D. or postdoctoral timeframe. I will discuss cloud-based platforms such as brainlife.io, that provide scalable, reproducible, and accessible computational infrastructure. Modern data technology can democratize neuroscience, accelerate discovery and foster scientific transparency and collaboration. Concrete examples will illustrate how these technologies can be applied to mapping brain connectivity, studying human learning and development, and developing predictive models for traumatic brain injury (TBI). By integrating cloud computing and scalable data-sharing frameworks, neuroscience can become more impactful, inclusive, and data-driven..

SeminarNeuroscienceRecording

Multisensory perception in the metaverse

Polly Dalton
Royal Holloway, University of London
May 7, 2025
SeminarNeuroscience

Pharmacological exploitation of neurotrophins and their receptors to develop novel therapeutic approaches against neurodegenerative diseases and brain trauma

Ioannis Charalampopoulos
Professor of Pharmacology, Medical School, University of Crete & Affiliated Researcher, Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH)
Mar 6, 2025

Neurotrophins (NGF, BDNF, NT-3) are endogenous growth factors that exert neuroprotective effects by preventing neuronal death and promoting neurogenesis. They act by binding to their respective high-affinity, pro-survival receptors TrkA, TrkB or TrkC, as well as to p75NTR death receptor. While these molecules have been shown to significantly slow or prevent neurodegeneration, their reduced bioavailability and inability to penetrate the blood-brain-barrier limit their use as potential therapeutics. To bypass these limitations, our research team has developed and patented small-sized, lipophilic compounds which selectively resemble neurotrophins’ effects, presenting preferable pharmacological properties and promoting neuroprotection and repair against neurodegeneration. In addition, the combination of these molecules with 3D cultured human neuronal cells, and their targeted delivery in the brain ventricles through soft robotic systems, could offer novel therapeutic approaches against neurodegenerative diseases and brain trauma.

SeminarNeuroscienceRecording

Brain Emulation Challenge Workshop

Randal A. Koene
Co-Founder and Chief Science Officer, Carboncopies
Feb 21, 2025

Brain Emulation Challenge workshop will tackle cutting-edge topics such as ground-truthing for validation, leveraging artificial datasets generated from virtual brain tissue, and the transformative potential of virtual brain platforms, such as applied to the forthcoming Brain Emulation Challenge.

SeminarNeuroscience

Digital Minds: Brain Development in the Age of Technology

Eva Telzer
Winston National Center on Technology Use, Brain and Psychological Development
Feb 16, 2025

Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, this seminar delves into the latest research on how technology influences brain development, relationships, and emotional well-being. Join us to explore strategies for harnessing technology's benefits while mitigating its potential challenges, empowering you to thrive in a digital age.

SeminarNeuroscience

Analyzing Network-Level Brain Processing and Plasticity Using Molecular Neuroimaging

Alan Jasanoff
Massachusetts Institute of Technology
Jan 27, 2025

Behavior and cognition depend on the integrated action of neural structures and populations distributed throughout the brain. We recently developed a set of molecular imaging tools that enable multiregional processing and plasticity in neural networks to be studied at a brain-wide scale in rodents and nonhuman primates. Here we will describe how a novel genetically encoded activity reporter enables information flow in virally labeled neural circuitry to be monitored by fMRI. Using the reporter to perform functional imaging of synaptically defined neural populations in the rat somatosensory system, we show how activity is transformed within brain regions to yield characteristics specific to distinct output projections. We also show how this approach enables regional activity to be modeled in terms of inputs, in a paradigm that we are extending to address circuit-level origins of functional specialization in marmoset brains. In the second part of the talk, we will discuss how another genetic tool for MRI enables systematic studies of the relationship between anatomical and functional connectivity in the mouse brain. We show that variations in physical and functional connectivity can be dissociated both across individual subjects and over experience. We also use the tool to examine brain-wide relationships between plasticity and activity during an opioid treatment. This work demonstrates the possibility of studying diverse brain-wide processing phenomena using molecular neuroimaging.

SeminarNeuroscience

Gene regulatory mechanisms of neocortex development and evolution

Mareike Albert
Center for Regenerative Therapies, Dresden University of Technology, Germany
Dec 11, 2024

The neocortex is considered to be the seat of higher cognitive functions in humans. During its evolution, most notably in humans, the neocortex has undergone considerable expansion, which is reflected by an increase in the number of neurons. Neocortical neurons are generated during development by neural stem and progenitor cells. Epigenetic mechanisms play a pivotal role in orchestrating the behaviour of stem cells during development. We are interested in the mechanisms that regulate gene expression in neural stem cells, which have implications for our understanding of neocortex development and evolution, neural stem cell regulation and neurodevelopmental disorders.

SeminarNeuroscience

Rett syndrome, MECP2 and therapeutic strategies

Rudolf Jaenisch
Whitehead Institute for Biomedical Research and Department of Biology, MIT, Cambridge, USA
Dec 10, 2024

The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss two topics: (i) the use of gene editing as an approach to therapy and (ii) the role of MECP2 in gene expression (i) The mutation of the X-linked MECP2 gene is causative for the disease. In a female patient, every cell has a wt copy that is, however, in 50% of the cells located on the inactive X chromosome. We have used epigenetic gene editing tools to activate the wt MECP2 allele on the inactive X chromosome. (ii) MECP2 is thought to act as repressor of gene expression. I will present data which show that MECP2 binds to Pol II and acts as an activator for thousands of genes. The target genes are significantly enriched for Autism related genes. Our data challenge the established model of MECP2’s role in gene expression and suggest novel therapeutic approaches.

SeminarOpen Source

“Open Raman Microscopy (ORM): A modular Raman spectroscopy setup with an open-source controller”

Kevin Uning
London Centre for Nanotechnology (LCN), University College London (UCL)
Nov 28, 2024

Raman spectroscopy is a powerful technique for identifying chemical species by probing their vibrational energy levels, offering exceptional specificity with a relatively simple setup involving a laser source, spectrometer, and microscope/probe. However, the high cost of Raman systems lacking modularity often limits exploratory research hindering broader adoption. To address the need for an affordable, modular microscopy platform for multimodal imaging, we present a customizable confocal Raman spectroscopy setup alongside an open-source acquisition software, ORM (Open Raman Microscopy) Controller, developed in Python. This solution bridges the gap between expensive commercial systems and complex, custom-built setups used by specialist research groups. In this presentation, we will cover the components of the setup, the design rationale, assembly methods, limitations, and its modular potential for expanding functionality. Additionally, we will demonstrate ORM’s capabilities for instrument control, 2D and 3D Raman mapping, region-of-interest selection, and its adaptability to various instrument configurations. We will conclude by showcasing practical applications of this setup across different research fields.

SeminarNeuroscience

Decision and Behavior

Sam Gershman, Jonathan Pillow, Kenji Doya
Harvard University; Princeton University; Okinawa Institute of Science and Technology
Nov 28, 2024

This webinar addressed computational perspectives on how animals and humans make decisions, spanning normative, descriptive, and mechanistic models. Sam Gershman (Harvard) presented a capacity-limited reinforcement learning framework in which policies are compressed under an information bottleneck constraint. This approach predicts pervasive perseveration, stimulus‐independent “default” actions, and trade-offs between complexity and reward. Such policy compression reconciles observed action stochasticity and response time patterns with an optimal balance between learning capacity and performance. Jonathan Pillow (Princeton) discussed flexible descriptive models for tracking time-varying policies in animals. He introduced dynamic Generalized Linear Models (Sidetrack) and hidden Markov models (GLM-HMMs) that capture day-to-day and trial-to-trial fluctuations in choice behavior, including abrupt switches between “engaged” and “disengaged” states. These models provide new insights into how animals’ strategies evolve under learning. Finally, Kenji Doya (OIST) highlighted the importance of unifying reinforcement learning with Bayesian inference, exploring how cortical-basal ganglia networks might implement model-based and model-free strategies. He also described Japan’s Brain/MINDS 2.0 and Digital Brain initiatives, aiming to integrate multimodal data and computational principles into cohesive “digital brains.”

SeminarOpen SourceRecording

Trackoscope: A low-cost, open, autonomous tracking microscope for long-term observations of microscale organisms

Priya Soneji
Georgia Institute of Technology
Oct 7, 2024

Cells and microorganisms are motile, yet the stationary nature of conventional microscopes impedes comprehensive, long-term behavioral and biomechanical analysis. The limitations are twofold: a narrow focus permits high-resolution imaging but sacrifices the broader context of organism behavior, while a wider focus compromises microscopic detail. This trade-off is especially problematic when investigating rapidly motile ciliates, which often have to be confined to small volumes between coverslips affecting their natural behavior. To address this challenge, we introduce Trackoscope, an 2-axis autonomous tracking microscope designed to follow swimming organisms ranging from 10μm to 2mm across a 325 square centimeter area for extended durations—ranging from hours to days—at high resolution. Utilizing Trackoscope, we captured a diverse array of behaviors, from the air-water swimming locomotion of Amoeba to bacterial hunting dynamics in Actinosphaerium, walking gait in Tardigrada, and binary fission in motile Blepharisma. Trackoscope is a cost-effective solution well-suited for diverse settings, from high school labs to resource-constrained research environments. Its capability to capture diverse behaviors in larger, more realistic ecosystems extends our understanding of the physics of living systems. The low-cost, open architecture democratizes scientific discovery, offering a dynamic window into the lives of previously inaccessible small aquatic organisms.

SeminarArtificial IntelligenceRecording

Why age-related macular degeneration is a mathematically tractable disease

Christine Curcio
The University of Alabama at Birmingham Heersink School of Medicine
Aug 18, 2024

Among all prevalent diseases with a central neurodegeneration, AMD can be considered the most promising in terms of prevention and early intervention, due to several factors surrounding the neural geometry of the foveal singularity. • Steep gradients of cell density, deployed in a radially symmetric fashion, can be modeled with a difference of Gaussian curves. • These steep gradients give rise to huge, spatially aligned biologic effects, summarized as the Center of Cone Resilience, Surround of Rod Vulnerability. • Widely used clinical imaging technology provides cellular and subcellular level information. • Data are now available at all timelines: clinical, lifespan, evolutionary • Snapshots are available from tissues (histology, analytic chemistry, gene expression) • A viable biogenesis model exists for drusen, the largest population-level intraocular risk factor for progression. • The biogenesis model shares molecular commonality with atherosclerotic cardiovascular disease, for which there has been decades of public health success. • Animal and cell model systems are emerging to test these ideas.

SeminarNeuroscience

Charting the fetal development of neural complexity

Joel Frohlich
Institute for Neuromodulation and Neurotechnology, Tübingen University
May 1, 2024
SeminarNeuroscience

A novel tool to combat stress (-hormone receptor) signatures

Katharina Gapp
Department of Heath Science and Technology, ETZH, Switzerland
Apr 23, 2024
SeminarPsychology

Enabling witnesses to actively explore faces and reinstate study-test pose during a lineup increases discrimination accuracy

Heather Flowe
University of Birmingham
Apr 21, 2024

In 2014, the US National Research Council called for the development of new lineup technologies to increase eyewitness identification accuracy (National Research Council, 2014). In a police lineup, a suspect is presented alongside multiple individuals known to be innocent who resemble the suspect in physical appearance know as fillers. A correct identification decision by an eyewitness can lead to a guilty suspect being convicted or an innocent suspect being exonerated from suspicion. An incorrect decision can result in the perpetrator remaining at large, or even a wrongful conviction of a mistakenly identified person. Incorrect decisions carry considerable human and financial costs, so it is essential to develop and enact lineup procedures that maximise discrimination accuracy, or the witness’ ability to distinguish guilty from innocent suspects. This talk focuses on new technology and innovation in the field of eyewitness identification. We will focus on the interactive lineup, which is a procedure that we developed based on research and theory from the basic science literature on face perception and recognition. The interactive lineup enables witnesses to actively explore and dynamically view the lineup members. The procedure has been shown to maximize discrimination accuracy, which is the witness’ ability to discriminate guilty from innocent suspects. The talk will conclude by reflecting on emerging technological frontiers and research opportunities.

SeminarNeuroscience

Immature brain insults and possible effects on cholinergic system neuroplasticity

Psarropoulou Katerina
Dept of Biological Applications & Technology, University of Ioannina, Greece
Mar 26, 2024
SeminarNeuroscience

Metabolic Remodelling in the Developing Forebrain in Health and Disease

Gaia Novarino
Institute of Science and Technology Austria
Oct 30, 2023

Little is known about the critical metabolic changes that neural cells have to undergo during development and how temporary shifts in this program can influence brain circuitries and behavior. Motivated by the identification of autism-associated mutations in SLC7A5, a transporter for metabolically essential large neutral amino acids (LNAAs), we utilized metabolomic profiling to investigate the metabolic states of the cerebral cortex across various developmental stages. Our findings reveal significant metabolic restructuring occurring in the forebrain throughout development, with specific groups of metabolites exhibiting stage-specific changes. Through the manipulation of Slc7a5 expression in neural cells, we discovered an interconnected relationship between the metabolism of LNAAs and lipids within the cortex. Neuronal deletion of Slc7a5 influences the postnatal metabolic state, resulting in a shift in lipid metabolism and a cell-type-specific modification in neuronal activity patterns. This ultimately gives rise to enduring circuit dysfunction.

SeminarNeuroscience

Spatial and Single Cell Genomics for Next Generation Neuroscience

Evan Macosko
Broad Institute, Cambridge, USA
Oct 11, 2023

The advent of next generation sequencing ushered in a ten-year period of exuberant technology development, enabling the quantification of gene expression and epigenetic features within individual cells, and within intact tissue sections.  In this seminar, I will outline our technological contributions, beginning with the development of Drop-seq, a method for high-throughput single cell analysis, followed by the development of Slide-seq, a technique for measuring genome-wide expression at 10 micron spatial resolution.  Using a combination of these techniques, we recently constructed a comprehensive cell type atlas of the adult mouse brain, positioning cell types within individual brain structures.  I will discuss the major findings from this dataset, including emerging principles of neurotransmission, and the localization of disease gene signatures to specific cell types.  Finally, I will introduce a new spatial technology, Slide-tags, that unifies single cell and spatial genomics into a single, highly scalable assay.

SeminarArtificial IntelligenceRecording

Computational and mathematical approaches to myopigenesis

C. Ross Ethier
Georgia Institute of Technology and Emory University
Jul 31, 2023

Myopia is predicted to affect 50% of all people worldwide by 2050, and is a risk factor for significant, potentially blinding ocular pathologies, such as retinal detachment and glaucoma. Thus, there is significant motivation to better understand the process of myopigenesis and to develop effective anti-myopigenic treatments. In nearly all cases of human myopia, scleral remodeling is an obligate step in the axial elongation that characterizes the condition. Here I will describe the development of a biomechanical assay based on transient unconfined compression of scleral samples. By treating the scleral as a poroelastic material, one can determine scleral biomechanical properties from extremely small samples, such as obtained from the mouse eye. These properties provide proxy measures of scleral remodeling, and have allowed us to identify all-trans retinoic acid (atRA) as a myopigenic stimulus in mice. I will also describe nascent collaborative work on modeling the transport of atRA in the eye.

SeminarNeuroscience

Synaptic mechanisms of pattern completion in the hippocampal CA3 region

Peter Jonas
Institute of Science and Technology Austria, ISTA
Jul 26, 2023
SeminarNeuroscience

Freeze or flee ? New insights from rodent models of autism

Sumantra “Shona” Chattarji
Director, CHINTA, TCG Centres for Research and Education in Science & Technology, Kolkata, India & Visiting Professor, Simons Initiative for the Developing Brain, University of Edinburgh, UK
Jun 21, 2023

Individuals afflicted with certain types of autism spectrum disorder often exhibit impaired cognitive function alongside enhanced emotional symptoms and mood lability. However, current understanding of the pathogenesis of autism and intellectual disabilities is based primarily on studies in the hippocampus and cortex, brain areas involved in cognitive function. But, these disorders are also associated with strong emotional symptoms, which are likely to involve changes in the amygdala and other brain areas. In this talk I will highlight these issues by presenting analyses in rat models of ASD/ID lacking Nlgn3 and Frm1 (causing Fragile X Syndrome). In addition to identifying new circuit and cellular alterations underlying divergent patterns of fear expression, these findings also suggest novel therapeutic strategies.

SeminarPsychology

Diagnosing dementia using Fastball neurocognitive assessment

George Stothart
University of Bath
Apr 18, 2023

Fastball is a novel, fast, passive biomarker of cognitive function, that uses cheap, scalable electroencephalography (EEG) technology. It is sensitive to early dementia; language, education, effort and anxiety independent and can be used in any setting including patients’ homes. It can capture a range of cognitive functions including semantic memory, recognition memory, attention and visual function. We have shown that Fastball is sensitive to cognitive dysfunction in Alzheimer’s disease and Mild Cognitive Impairment, with data collected in patients’ homes using low-cost portable EEG. We are now preparing for significant scale-up and the validation of Fastball in primary and secondary care.

SeminarNeuroscienceRecording

How a fungus overcomes the defence of C. elegans

Reinhard Fischer
Karlsruhe Institute of Technology
Mar 16, 2023
SeminarNeuroscienceRecording

How Children Design by Analogy: The Role of Spatial Thinking

Caiwei Zhu
Delft University of Technology
Mar 15, 2023

Analogical reasoning is a common reasoning tool for learning and problem-solving. Existing research has extensively studied children’s reasoning when comparing, or choosing from ready-made analogies. Relatively less is known about how children come up with analogies in authentic learning environments. Design education provides a suitable context to investigate how children generate analogies for creative learning purposes. Meanwhile, the frequent use of visual analogies in design provides an additional opportunity to understand the role of spatial reasoning in design-by-analogy. Spatial reasoning is one of the most studied human cognitive factors and is critical to the learning of science, technology, engineering, arts, and mathematics (STEAM). There is growing interest in exploring the interplay between analogical reasoning and spatial reasoning. In this talk, I will share qualitative findings from a case study, where a class of 11-to-12-year-olds in the Netherlands participated in a biomimicry design project. These findings illustrate (1) practical ways to support children’s analogical reasoning in the ideation process and (2) the potential role of spatial reasoning as seen in children mapping form-function relationships in nature analogically and adaptively to those in human designs.

SeminarNeuroscienceRecording

Children-Agent Interaction For Assessment and Rehabilitation: From Linguistic Skills To Mental Well-being

Micole Spitale
Department of Computer Science and Technology, University of Cambridge
Feb 6, 2023

Socially Assistive Robots (SARs) have shown great potential to help children in therapeutic and healthcare contexts. SARs have been used for companionship, learning enhancement, social and communication skills rehabilitation for children with special needs (e.g., autism), and mood improvement. Robots can be used as novel tools to assess and rehabilitate children’s communication skills and mental well-being by providing affordable and accessible therapeutic and mental health services. In this talk, I will present the various studies I have conducted during my PhD and at the Cambridge Affective Intelligence and Robotics Lab to explore how robots can help assess and rehabilitate children’s communication skills and mental well-being. More specifically, I will provide both quantitative and qualitative results and findings from (i) an exploratory study with children with autism and global developmental disorders to investigate the use of intelligent personal assistants in therapy; (ii) an empirical study involving children with and without language disorders interacting with a physical robot, a virtual agent, and a human counterpart to assess their linguistic skills; (iii) an 8-week longitudinal study involving children with autism and language disorders who interacted either with a physical or a virtual robot to rehabilitate their linguistic skills; and (iv) an empirical study to aid the assessment of mental well-being in children. These findings can inform and help the child-robot interaction community design and develop new adaptive robots to help assess and rehabilitate linguistic skills and mental well-being in children.

SeminarNeuroscienceRecording

Minute-scale periodic sequences in medial entorhinal cortex

Soledad Gonzalo Cogno
Norwegian University of Science and Technology, Trondheim
Jan 31, 2023

The medial entorhinal cortex (MEC) hosts many of the brain’s circuit elements for spatial navigation and episodic memory, operations that require neural activity to be organized across long durations of experience. While location is known to be encoded by a plethora of spatially tuned cell types in this brain region, little is known about how the activity of entorhinal cells is tied together over time. Among the brain’s most powerful mechanisms for neural coordination are network oscillations, which dynamically synchronize neural activity across circuit elements. In MEC, theta and gamma oscillations provide temporal structure to the neural population activity at subsecond time scales. It remains an open question, however, whether similarly coordination occurs in MEC at behavioural time scales, in the second-to-minute regime. In this talk I will show that MEC activity can be organized into a minute-scale oscillation that entrains nearly the entire cell population, with periods ranging from 10 to 100 seconds. Throughout this ultraslow oscillation, neural activity progresses in periodic and stereotyped sequences. The oscillation sometimes advances uninterruptedly for tens of minutes, transcending epochs of locomotion and immobility. Similar oscillatory sequences were not observed in neighboring parasubiculum or in visual cortex. The ultraslow periodic sequences in MEC may have the potential to couple its neurons and circuits across extended time scales and to serve as a scaffold for processes that unfold at behavioural time scales.

SeminarNeuroscience

Meta-learning functional plasticity rules in neural networks

Tim Vogels
Institute of Science and Technology (IST), Klosterneuburg, Austria
Jan 17, 2023

Synaptic plasticity is known to be a key player in the brain’s life-long learning abilities. However, due to experimental limitations, the nature of the local changes at individual synapses and their link with emerging network-level computations remain unclear. I will present a numerical, meta-learning approach to deduce plasticity rules from either neuronal activity data and/or prior knowledge about the network's computation. I will first show how to recover known rules, given a human-designed loss function in rate networks, or directly from data, using an adversarial approach. Then I will present how to scale-up this approach to recurrent spiking networks using simulation-based inference.

SeminarNeuroscienceRecording

The medial prefrontal cortex replays generalized sequences

Karola Käfer
Institute of Science and Technology Austria
Jan 10, 2023

Whilst spatial navigation is a function ascribed to the hippocampus, flexibly adapting to a change in rule depends on the medial prefrontal cortex (mPFC). Single-units were recorded from the hippocampus and mPFC of rats shifting between a spatially- and cue-guided rule on a plus-maze. The mPFC population coded for the relative position between start and goal arm. During awake immobility periods, the mPFC replayed organized sequences of generalized positions which positively correlated with rule-switching performance. Conversely, hippocampal replay negatively correlated with performance and occurred independently of mPFC replay. Sequential replay in the hippocampus and mPFC may thus serve different functions.

SeminarNeuroscience

Probabilistic simplicity in the study of sensory systems

Wiktor Mlynarski
Institute of Science and Technology Austria
Nov 30, 2022
SeminarNeuroscience

Taking the pulse of ageing: the role of cerebrovascular risk factors in ageing and dementia

Monica Fabiani
Beckman Institute for Advanced Science and Technology, University of Illinois
Nov 22, 2022

Cerebrovascular support is critical for healthy cognitive ageing. Reduced cerebral blood flow in ageing is caused, among other things, by hypertension, arteriosclerosis (i.e. stiffening of the arteries) and plaque formation. Arterial stiffness is predictive of cognitive decline, is a critical risk factor for cerebrovascular accidents, and has been linked to heightened risks for Alzheimer’s Disease and other forms of dementia. The elasticity of cerebral arteries is influenced by lifestyle factors, including cardiorespiratory fitness. Monica will discuss data obtained in their laboratory with new noninvasive measures of cerebrovascular health (pulse-DOT, a diffuse optical tomographic method for studying cerebral arteriosclerosis), in conjunction with structural and functional brain measures and cognitive assessments. These findings support a model in which localised changes in arteriosclerosis lead to specific profiles of structural, functional, and cognitive declines, paving a way to individualised interventions.

SeminarNeuroscienceRecording

Why dendrites matter for biological and artificial circuits

Panayiota Poirazi
Institute of Molecular Biology and Biotechnology (IMBB)
Nov 8, 2022
SeminarNeuroscience

Brian2CUDA: Generating Efficient CUDA Code for Spiking Neural Networks

Denis Alevi
Berlin Institute of Technology (
Nov 2, 2022

Graphics processing units (GPUs) are widely available and have been used with great success to accelerate scientific computing in the last decade. These advances, however, are often not available to researchers interested in simulating spiking neural networks, but lacking the technical knowledge to write the necessary low-level code. Writing low-level code is not necessary when using the popular Brian simulator, which provides a framework to generate efficient CPU code from high-level model definitions in Python. Here, we present Brian2CUDA, an open-source software that extends the Brian simulator with a GPU backend. Our implementation generates efficient code for the numerical integration of neuronal states and for the propagation of synaptic events on GPUs, making use of their massively parallel arithmetic capabilities. We benchmark the performance improvements of our software for several model types and find that it can accelerate simulations by up to three orders of magnitude compared to Brian’s CPU backend. Currently, Brian2CUDA is the only package that supports Brian’s full feature set on GPUs, including arbitrary neuron and synapse models, plasticity rules, and heterogeneous delays. When comparing its performance with Brian2GeNN, another GPU-based backend for the Brian simulator with fewer features, we find that Brian2CUDA gives comparable speedups, while being typically slower for small and faster for large networks. By combining the flexibility of the Brian simulator with the simulation speed of GPUs, Brian2CUDA enables researchers to efficiently simulate spiking neural networks with minimal effort and thereby makes the advancements of GPU computing available to a larger audience of neuroscientists.

SeminarNeuroscience

Lifelong Learning AI via neuro inspired solutions

Hava Siegelmann
University of Massachusetts Amherst
Oct 26, 2022

AI embedded in real systems, such as in satellites, robots and other autonomous devices, must make fast, safe decisions even when the environment changes, or under limitations on the available power; to do so, such systems must be adaptive in real time. To date, edge computing has no real adaptivity – rather the AI must be trained in advance, typically on a large dataset with much computational power needed; once fielded, the AI is frozen: It is unable to use its experience to operate if environment proves outside its training or to improve its expertise; and worse, since datasets cannot cover all possible real-world situations, systems with such frozen intelligent control are likely to fail. Lifelong Learning is the cutting edge of artificial intelligence - encompassing computational methods that allow systems to learn in runtime and incorporate learning for application in new, unanticipated situations. Until recently, this sort of computation has been found exclusively in nature; thus, Lifelong Learning looks to nature, and in particular neuroscience, for its underlying principles and mechanisms and then translates them to this new technology. Our presentation will introduce a number of state-of-the-art approaches to achieve AI adaptive learning, including from the DARPA’s L2M program and subsequent developments. Many environments are affected by temporal changes, such as the time of day, week, season, etc. A way to create adaptive systems which are both small and robust is by making them aware of time and able to comprehend temporal patterns in the environment. We will describe our current research in temporal AI, while also considering power constraints.

SeminarNeuroscience

INC Day 2022: Neuroethics

Hervé Chneiweiss, Elizabeth Spelke, Judy Illes, Bernard Baertschi, Fruzsina Monar-Gabor
Oct 19, 2022

Organized by the INC in partnership with the BioMedical Engineering Paris international Master’s program and the NeuroParis Master’s programs and is supported by the Faculty of Sciences of Paris Cité University and the Graduate school Psychological science.

SeminarNeuroscienceRecording

AI-assisted language learning: Assessing learners who memorize and reason by analogy

Pierre-Alexandre Murena
University of Helsinki
Oct 5, 2022

Vocabulary learning applications like Duolingo have millions of users around the world, but yet are based on very simple heuristics to choose teaching material to provide to their users. In this presentation, we will discuss the possibility to develop more advanced artificial teachers, which would be based on modeling of the learner’s inner characteristics. In the case of teaching vocabulary, understanding how the learner memorizes is enough. When it comes to picking grammar exercises, it becomes essential to assess how the learner reasons, in particular by analogy. This second application will illustrate how analogical and case-based reasoning can be employed in an alternative way in education: not as the teaching algorithm, but as a part of the learner’s model.

SeminarNeuroscience

September webinar

Dieter Jaeger & Arvind Kumar
Emory University Resp KTH Royal institute of technology
Sep 29, 2022
SeminarNeuroscienceRecording

Time as its own representation? Exploring a link between timing of cognition and time perception

Ishan Singhal
Indian Institute of Technology, Kanpur
Sep 27, 2022

The way we represent and perceive time has crucial implications for studying temporality in conscious experience. Contrasting positions posit that temporal information is separately abstracted out like any other perceptual property, or that time is represented through representations having temporal properties themselves. To add to this debate, we investigated alterations in felt time in conditions where only conscious visual experience is altered while a bistable figure remains physically unchanged. In this talk, I will discuss two studies that we have done in relation to answering this question. In study 1, we investigated whether perceptual switches in fixed intervals altered felt time. In three experiments we showed that a break in visual experience (via a perceptual switch) also leads to a break in felt time. In study 2, we are currently looking at figure-ground perception in ambigous displays. Here, in experiment 1 we show that differences in flicker frequencies on ambigous regions can induce figure-ground segregation. To see if a reverse complementarity exists for felt time, we ask participants to view ambigous regions as figure/ground and show that they have different temporal resolutions for the same region based on whether it is seen as figure or background. Overall, the two studies provide evidence for temporal mirroring and isomorphism in visual experience, arguing for a link between the timing of experience and time perception.

SeminarOpen SourceRecording

An open-source miniature two-photon microscope for large-scale calcium imaging in freely moving mice

Weijian Zong
Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology
Sep 11, 2022

Due to the unsuitability of benchtop imaging for tasks that require unrestrained movement, investigators have tried, for almost two decades, to develop miniature 2P microscopes-2P miniscopes–that can be carried on the head of freely moving animals. In this talk, I would first briefly review the development history of this technique, and then report our latest progress on developing the new generation of 2P miniscopes, MINI2P, that overcomes the limits of previous versions by both meeting requirements for fatigue-free exploratory behavior during extended recording periods and satisfying demands for further increasing the cell yield by an order of magnitude, to thousands of neurons. The performance and reliability of MINI2P are validated by recordings of spatially tuned neurons in three brain regions and in three behavioral assays. All information about MINI2P is open access, with instruction videos, code, and manuals on public repositories, and workshops will be organized to help new users getting started. MINI2P permits large-scale and high-resolution calcium imaging in freely-moving mice, and opens the door to investigating brain functions during unconstrained natural behaviors.

SeminarNeuroscienceRecording

Learning static and dynamic mappings with local self-supervised plasticity

Pantelis Vafeidis
California Institute of Technology
Sep 6, 2022

Animals exhibit remarkable learning capabilities with little direct supervision. Likewise, self-supervised learning is an emergent paradigm in artificial intelligence, closing the performance gap to supervised learning. In the context of biology, self-supervised learning corresponds to a setting where one sense or specific stimulus may serve as a supervisory signal for another. After learning, the latter can be used to predict the former. On the implementation level, it has been demonstrated that such predictive learning can occur at the single neuron level, in compartmentalized neurons that separate and associate information from different streams. We demonstrate the power such self-supervised learning over unsupervised (Hebb-like) learning rules, which depend heavily on stimulus statistics, in two examples: First, in the context of animal navigation where predictive learning can associate internal self-motion information always available to the animal with external visual landmark information, leading to accurate path-integration in the dark. We focus on the well-characterized fly head direction system and show that our setting learns a connectivity strikingly similar to the one reported in experiments. The mature network is a quasi-continuous attractor and reproduces key experiments in which optogenetic stimulation controls the internal representation of heading, and where the network remaps to integrate with different gains. Second, we show that incorporating global gating by reward prediction errors allows the same setting to learn conditioning at the neuronal level with mixed selectivity. At its core, conditioning entails associating a neural activity pattern induced by an unconditioned stimulus (US) with the pattern arising in response to a conditioned stimulus (CS). Solving the generic problem of pattern-to-pattern associations naturally leads to emergent cognitive phenomena like blocking, overshadowing, saliency effects, extinction, interstimulus interval effects etc. Surprisingly, we find that the same network offers a reductionist mechanism for causal inference by resolving the post hoc, ergo propter hoc fallacy.

SeminarNeuroscience

Learning with less labels for medical image segmentation

Mehrtash Harandi
Monash University
Aug 2, 2022

Accurate segmentation of medical images is a key step in developing Computer-Aided Diagnosis (CAD) and automating various clinical tasks such as image-guided interventions. The success of state-of-the-art methods for medical image segmentation is heavily reliant upon the availability of a sizable amount of labelled data. If the required quantity of labelled data for learning cannot be reached, the technology turns out to be fragile. The principle of consensus tells us that as humans, when we are uncertain how to act in a situation, we tend to look to others to determine how to respond. In this webinar, Dr Mehrtash Harandi will show how to model the principle of consensus to learn to segment medical data with limited labelled data. In doing so, we design multiple segmentation models that collaborate with each other to learn from labelled and unlabelled data collectively.

SeminarNeuroscience

The role of astroglia-neuron interactions in generation and spread of seizures

Emre Yaksi
Kavli Institute for Systems Neuroscience, Norwegian University of Science and technology
Jul 5, 2022

Astroglia-neuron interactions are involved in multiple processes, regulating development, excitability and connectivity of neural circuits. Accumulating number of evidences highlight a direct connection between aberrant astroglial genetics and physiology in various forms of epilepsies. Using zebrafish seizure models, we showed that neurons and astroglia follow different spatiotemporal dynamics during transitions from pre-ictal to ictal activity. We observed that during pre-ictal period neurons exhibit local synchrony and low level of activity, whereas astroglia exhibit global synchrony and high-level of calcium signals that are anti correlated with neural activity. Instead, generalized seizures are marked by a massive release of astroglial glutamate release as well as a drastic increase of astroglia and neuronal activity and synchrony across the entire brain. Knocking out astroglial glutamate transporters leads to recurrent spontaneous generalized seizures accompanied with massive astroglial glutamate release. We are currently using a combination of genetic and pharmacological approaches to perturb astroglial glutamate signalling and astroglial gap junctions to further investigate their role in generation and spreading of epileptic seizures across the brain.

SeminarNeuroscience

Imperial Neurotechnology 2022 - Annual Research Symposium

Marcus Kaiser, Sarah Marzi, Giuseppe Gava, Gema Vera Gonzalez, Matteo Vinao-Carl, Sihao Lu, Hayriye Cagnan
Nottingham University, Imperial College, University of Oxford
Jul 4, 2022

A diverse mix of neurotechnology talks and posters from researchers at Imperial and beyond. Visit our event page to find out more. The event is in-person but talk sessions will be broadcast via Teams.

SeminarNeuroscience

The 15th David Smith Lecture in Anatomical Neuropharmacology: Professor Tim Bliss, "Memories of long term potentiation

Tim Bliss
Visiting Professor at UCL and the Frontier Institutes of Science and Technology, Xi’an Jiaotong University, China
Jun 13, 2022

The David Smith Lectures in Anatomical Neuropharmacology, Part of the 'Pharmacology, Anatomical Neuropharmacology and Drug Discovery Seminars Series', Department of Pharmacology, University of Oxford. The 15th David Smith Award Lecture in Anatomical Neuropharmacology will be delivered by Professor Tim Bliss, Visiting Professor at UCL and the Frontier Institutes of Science and Technology, Xi’an Jiaotong University, China, and is hosted by Professor Nigel Emptage. This award lecture was set up to celebrate the vision of Professor A David Smith, namely, that explanations of the action of drugs on the brain requires the definition of neuronal circuits, the location and interactions of molecules. Tim Bliss gained his PhD at McGill University in Canada. He joined the MRC National Institute for Medical Research in Mill Hill, London in 1967, where he remained throughout his career. His work with Terje Lømo in the late 1960’s established the phenomenon of long-term potentiation (LTP) as the dominant synaptic model of how the mammalian brain stores memories. He was elected as a Fellow of the Royal Society in 1994 and is a founding fellow of the Academy of Medical Sciences. He shared the Bristol Myers Squibb award for Neuroscience with Eric Kandel in 1991, the Ipsen Prize for Neural Plasticity with Richard Morris and Yadin Dudai in 2013. In May 2012 he gave the annual Croonian Lecture at the Royal Society on ‘The Mechanics of Memory’. In 2016 Tim, with Graham Collingridge and Richard Morris shared the Brain Prize, one of the world's most coveted science prizes. Abstract: In 1966 there appeared in Acta Physiologica Scandinavica an abstract of a talk given by Terje Lømo, a PhD student in Per Andersen’s laboratory at the University of Oslo. In it Lømo described the long-lasting potentiation of synaptic responses in the dentate gyrus of the anaesthetised rabbit that followed repeated episodes of 10-20Hz stimulation of the perforant path. Thus, heralded and almost entirely unnoticed, one of the most consequential discoveries of 20th century neuroscience was ushered into the world. Two years later I arrived in Oslo as a visiting post-doc from the National Institute for Medical Research in Mill Hill, London. In this talk I recall the events that led us to embark on a systematic reinvestigation of the phenomenon now known as long-term potentiation (LTP) and will then go on to describe the discoveries and controversies that enlivened the early decades of research into synaptic plasticity in the mammalian brain. I will end with an observer’s view of the current state of research in the field, and what we might expect from it in the future.

SeminarNeuroscience

Social immunity in ants: disease defense of the colony

Sylvia Cremer
Institute of Science and Technology Austria
May 23, 2022

Social insects fight disease as a collective. Their colonies are protected against disease by the combination of the individual immune defenses of all colony members and their jointly performed nest- and colony-hygiene. This social immunity is achieved by cooperative behaviors to reduce pathogen load of the colony and to prevent transmission along the social interaction networks of colony members. Individual and social immunity interact: performance of sanitary care can affect future disease susceptibility, yet also vice versa, individuals differing in susceptibility adjust their sanitary care performance to their individual risk of infection. I present the integrated approach we use to understand how colony protection arises from the individual and collective actions of colony members and how it affects pathogen communities and hence disease ecology.

SeminarNeuroscience

Light-induced moderations in vitality and sleep in the field

Karin C. H. J. Smolders
Eindhoven University of Technology
May 18, 2022

Retinal light exposure is modulated by our behavior, and light exposure patterns show strong variations within and between persons. Yet, most laboratory studies investigated influences of constant lighting settings on human daytime functioning and sleep. In this presentation, I will discuss a series of studies investigating light-induced moderations in sleepiness, vitality and sleep, with a strong focus on the temporal dynamics in these effects, and the bi-directional relation between persons' light profiles and their behavior.

SeminarNeuroscienceRecording

Let's talk about failure!

Edvard Moser ;; Sara Solla ;; Nachum Ulanovsky
Norwegian University of Science and Technology (NTNU) ;; Northwestern University ;; Weizmann Institute of Science
May 10, 2022

Try again. Fail again. Fail better. (Samuel Beckett)

SeminarNeuroscience

From a by-stander to an influencer: How microglia adapt to altered environments and influence neuronal activity

Sandra Siegert
Institute of Science and Technology Austria
May 2, 2022

Microglia, traditionally classified as immune-responsive, adjust synaptic connections during development and disease. However, their role in the adult nervous system has been mostly diminished to an observer. In my research group, we are interested in how microglia are involved in establishing and maintaining accurate neuronal circuit function in the retina and in the visual cortex. In my talk, I will introduce our strategies how to decipher the microglia’s functional identity and how this information guided us to microglia enabled extracellular matrix remodeling and reinstatment of juvenile-like plasticity in the adult brain.

SeminarNeuroscience

The Synaptome Architecture of the Brain: Lifespan, disease, evolution and behavior

Seth Grant
Professor of Molecular Neuroscience, Centre for Clinical Brain Sciences, University of Edinburgh, UK
May 1, 2022

The overall aim of my research is to understand how the organisation of the synapse, with particular reference to the postsynaptic proteome (PSP) of excitatory synapses in the brain, informs the fundamental mechanisms of learning, memory and behaviour and how these mechanisms go awry in neurological dysfunction. The PSP indeed bears a remarkable burden of disease, with components being disrupted in disorders (synaptopathies) including schizophrenia, depression, autism and intellectual disability. Our work has been fundamental in revealing and then characterising the unprecedented complexity (>1000 highly conserved proteins) of the PSP in terms of the subsynaptic architecture of postsynaptic proteins such as PSD95 and how these proteins assemble into complexes and supercomplexes in different neurons and regions of the brain. Characterising the PSPs in multiple species, including human and mouse, has revealed differences in key sets of functionally important proteins, correlates with brain imaging and connectome data, and a differential distribution of disease-relevant proteins and pathways. Such studies have also provided important insight into synapse evolution, establishing that vertebrate behavioural complexity is a product of the evolutionary expansion in synapse proteomes that occurred ~500 million years ago. My lab has identified many mutations causing cognitive impairments in mice before they were found to cause human disorders. Our proteomic studies revealed that >130 brain diseases are caused by mutations affecting postsynaptic proteins. We uncovered mechanisms that explain the polygenic basis and age of onset of schizophrenia, with postsynaptic proteins, including PSD95 supercomplexes, carrying much of the polygenic burden. We discovered the “Genetic Lifespan Calendar”, a genomic programme controlling when genes are regulated. We showed that this could explain how schizophrenia susceptibility genes are timed to exert their effects in young adults. The Genes to Cognition programme is the largest genetic study so far undertaken into the synaptic molecular mechanisms underlying behaviour and physiology. We made important conceptual advances that inform how the repertoire of both innate and learned behaviours is built from unique combinations of postsynaptic proteins that either amplify or attenuate the behavioural response. This constitutes a key advance in understanding how the brain decodes information inherent in patterns of nerve impulses, and provides insight into why the PSP has evolved to be so complex, and consequently why the phenotypes of synaptopathies are so diverse. Our most recent work has opened a new phase, and scale, in understanding synapses with the first synaptome maps of the brain. We have developed next-generation methods (SYNMAP) that enable single-synapse resolution molecular mapping across the whole mouse brain and extensive regions of the human brain, revealing the molecular and morphological features of a billion synapses. This has already uncovered unprecedented spatiotemporal synapse diversity organised into an architecture that correlates with the structural and functional connectomes, and shown how mutations that cause cognitive disorders reorganise these synaptome maps; for example, by detecting vulnerable synapse subtypes and synapse loss in Alzheimer’s disease. This innovative synaptome mapping technology has huge potential to help characterise how the brain changes during normal development, including in specific cell types, and with degeneration, facilitating novel pathways to diagnosis and therapy.

SeminarNeuroscience

Remembering Immunity, Central regulation of peripheral immune processes

Asya Rolls
Technion, Israel Institute of Technology
May 1, 2022

Thoughts and emotions can impact physiology. This connection is evident by the emergence of disease following stress, psychosomatic disorders, or recovery in response to placebo treatment. Nevertheless, this fundamental aspect of physiology remains largely unexplored. In this talk, I will focus on the brain’s involvement in regulating the peripheral immune response and explore the question of how the brain evaluates and represents the state of the immune system it regulates.

SeminarNeuroscienceRecording

Network resonance: a framework for dissecting feedback and frequency filtering mechanisms in neuronal systems

Horacio Rotstein
New Jersey Institute of Technology
Apr 12, 2022

Resonance is defined as a maximal amplification of the response of a system to periodic inputs in a limited, intermediate input frequency band. Resonance may serve to optimize inter-neuronal communication, and has been observed at multiple levels of neuronal organization including membrane potential fluctuations, single neuron spiking, postsynaptic potentials, and neuronal networks. However, it is unknown how resonance observed at one level of neuronal organization (e.g., network) depends on the properties of the constituting building blocks, and whether, and if yes how, it affects the resonant and oscillatory properties upstream. One difficulty is the absence of a conceptual framework that facilitates the interrogation of resonant neuronal circuits and organizes the mechanistic investigation of network resonance in terms of the circuit components, across levels of organization. We address these issues by discussing a number of representative case studies. The dynamic mechanisms responsible for the generation of resonance involve disparate processes, including negative feedback effects, history-dependence, spiking discretization combined with subthreshold passive dynamics, combinations of these, and resonance inheritance from lower levels of organization. The band-pass filters associated with the observed resonances are generated by primarily nonlinear interactions of low- and high-pass filters. We identify these filters (and interactions) and we argue that these are the constitutive building blocks of a resonance framework. Finally, we discuss alternative frameworks and we show that different types of models (e.g., spiking neural networks and rate models) can show the same type of resonance by qualitative different mechanisms.

SeminarPhysics of LifeRecording

Making a Mesh of Things: Using Network Models to Understand the Mechanics of Heterogeneous Tissues

Jonathan Michel
Rochester Institute of Technology
Apr 3, 2022

Networks of stiff biopolymers are an omnipresent structural motif in cells and tissues. A prominent modeling framework for describing biopolymer network mechanics is rigidity percolation theory. This theory describes model networks as nodes joined by randomly placed, springlike bonds. Increasing the amount of bonds in a network results in an abrupt, dramatic increase in elastic moduli above a certain threshold – an example of a mechanical phase transition. While homogeneous networks are well studied, many tissues are made of disparate components and exhibit spatial fluctuations in the concentrations of their constituents. In this talk, I will first discuss recent work in which we explained the structural basis of the shear mechanics of healthy and chemically degraded cartilage by coupling a rigidity percolation framework with a background gel. Our model takes into account collagen concentration, as well as the concentration of peptidoglycans in the surrounding polyelectrolyte gel, to produce a structureproperty relationship that describes the shear mechanics of both sound and diseased cartilage. I will next discuss the introduction of structural correlation in constructing networks, such that sparse and dense patches emerge. I find moderate correlation allows a network to become rigid with fewer bonds, while this benefit is partly erased by excessive correlation. We explain this phenomenon through analysis of the spatial fluctuations in strained networks’ displacement fields. Finally, I will address our work’s implications for non-invasive diagnosis of pathology, as well as rational design of prostheses and novel soft materials.

ePoster

Designing a transmodal technology to feel sound through touch: The multichannel vibrotactile gloves

Andreanne Sharp, Loonan Chauvette, Éliane Leprohon, Louis-Philippe Perron-Houle, Valentin Pintat, Aidin Delnavaz, Jérémie Voix

FENS Forum 2024

ePoster

Exploring social hierarchies: An experimental study using RFID technology in mice

Adam Brosnan, Ewelina Knapska, Ksenia Meyza

FENS Forum 2024

ePoster

Investigating design parameters for improved tissue integration in brain-computer-interface technology

Corinne Orlemann, Roxana N. Kooijmans, Laura M. De Santis, Paul Neering, Christian Boehler, Kirti Sharma, Patrick Ruther, Maria Asplund, Pieter R. Roelfsema

FENS Forum 2024

ePoster

Organoid technology: A new way to model ischemic stroke

Chiara Giorgi, Giorgia Lombardozzi, Housen Kacem, Fabrizio Ammannito, Michele d'Angelo, Annamaria Cimini

FENS Forum 2024

ePoster

Three-dimensional structural analysis of GABAergic neurons in the mouse claustrum using tissue-clearing technology

Hiroyuki Hioki, Megumu Takahashi, Tomoyo Kobayashi, Haruhi Mizuma, Shinichiro Okamoto, Kenta Yamauchi, Kazuki Okamoto, Yoko Ishida, Masato Koike, Masahiko Watanabe, Tadashi Isa

FENS Forum 2024

ePoster

Unravelling the role of prefrontal α7 nicotinic acetylcholine receptors in inhibitory control in physiological and pathological contexts: A behavioral investigation using touchscreen technology

Gabriela Medeiros, Chloé Bouarab, Pegah Azizi, Stéphanie Pons, Uwe Maskos, Morgane Besson

FENS Forum 2024