Temporal Attention
temporal attention
Howard Bowman
The PhD project is focused on identifying the role of conscious perception through a neuroimaging and computational investigation. The project aims to characterise the neural correlates that support the formation of episodic memories and explain these findings with the Simultaneous Type/ Serial Token (STST) model, a neural network model of temporal attention. The project is competition-funded under the Midlands Integrative Biosciences Training Partnership, supported by the UK Biotechnology and Biological Sciences Research Council.
Neurocognitive mechanisms of enhanced implicit temporal processing in action video game players
Playing action video games involves both explicit (conscious) and implicit (non-conscious) expectations of timed events, such as the appearance of foes. While studies revealed that explicit attention skills are improved in action video game players (VGPs), their implicit skills remained untested. To this end, we investigated explicit and implicit temporal processing in VGPs and non-VGPs (control participants). In our variable foreperiod task, participants were immersed in a virtual reality and instructed to respond to a visual target appearing at variable delays after a cue. I will present behavioral, oculomotor and EEG data and discuss possible markers of the implicit passage of time and explicit temporal attention processing. All evidence indicates that VGPs have enhanced implicit skills to track the passage of time, which does not require conscious attention. Thus, action video game play may improve a temporal processing found altered in psychopathologies, such as schizophrenia. Could digital (game-based) interventions help remediate temporal processing deficits in psychiatric populations?
Neurocognitive mechanisms of proactive temporal attention: challenging oscillatory and cortico-centered models
To survive in a rapidly dynamic world, the brain predicts the future state of the world and proactively adjusts perception, attention and action. A key to efficient interaction is to predict and prepare to not only “where” and “what” things will happen, but also to “when”. I will present studies in healthy and neurological populations that investigated the cognitive architecture and neural basis of temporal anticipation. First, influential ‘entrainment’ models suggest that anticipation in rhythmic contexts, e.g. music or biological motion, uniquely relies on alignment of attentional oscillations to external rhythms. Using computational modeling and EEG, I will show that cortical neural patterns previously associated with entrainment in fact overlap with interval timing mechanisms that are used in aperiodic contexts. Second, temporal prediction and attention have commonly been associated with cortical circuits. Studying neurological populations with subcortical degeneration, I will present data that point to a double dissociation between rhythm- and interval-based prediction in the cerebellum and basal ganglia, respectively, and will demonstrate a role for the cerebellum in attentional control of perceptual sensitivity in time. Finally, using EEG in neurodegenerative patients, I will demonstrate that the cerebellum controls temporal adjustment of cortico-striatal neural dynamics, and use computational modeling to identify cerebellar-controlled neural parameters. Altogether, these findings reveal functionally and neural context-specificity and subcortical contributions to temporal anticipation, revising our understanding of dynamic cognition.
The dynamics of temporal attention
Selection is the hallmark of attention: processing improves for attended items but is relatively impaired for unattended items. It is well known that visual spatial attention changes sensory signals and perception in this selective fashion. In the work I will present, we asked whether and how attentional selection happens across time. First, our experiments revealed that voluntary temporal attention (attention to specific points in time) is selective, resulting in perceptual tradeoffs across time. Second, we measured small eye movements called microsaccades and found that directing voluntary temporal attention increases the stability of the eyes in anticipation of an attended stimulus. Third, we developed a computational model of dynamic attention, which proposes specific mechanisms underlying temporal attention and its selectivity. Lastly, I will mention how we are testing predictions of the model with MEG. Altogether, this research shows how precisely timed voluntary attention helps manage inherent limits in visual processing across short time intervals, advancing our understanding of attention as a dynamic process.