← Back

Temporal Bisection

Topic spotlight
TopicWorld Wide

temporal bisection

Discover seminars, jobs, and research tagged with temporal bisection across World Wide.
2 curated items2 Seminars
Updated over 1 year ago
2 items · temporal bisection
2 results
SeminarNeuroscienceRecording

Distinctive features of experiential time: Duration, speed and event density

Marianna Lamprou Kokolaki
Université Paris-Saclay
Mar 26, 2024

William James’s use of “time in passing” and “stream of thoughts” may be two sides of the same coin that emerge from the brain segmenting the continuous flow of information into discrete events. Departing from that idea, we investigated how the content of a realistic scene impacts two distinct temporal experiences: the felt duration and the speed of the passage of time. I will present you the results from an online study in which we used a well-established experimental paradigm, the temporal bisection task, which we extended to passage of time judgments. 164 participants classified seconds-long videos of naturalistic scenes as short or long (duration), or slow or fast (passage of time). Videos contained a varying number and type of events. We found that a large number of events lengthened subjective duration and accelerated the felt passage of time. Surprisingly, participants were also faster at estimating their felt passage of time compared to duration. The perception of duration heavily depended on objective duration, whereas the felt passage of time scaled with the rate of change. Altogether, our results support a possible dissociation of the mechanisms underlying the two temporal experiences.

SeminarNeuroscienceRecording

Neural signature for accumulated evidence underlying temporal decisions

Nir Ofir
The Hebrew University of Jerusalem
Dec 15, 2021

Cognitive models of timing often include a pacemaker analogue whose ticks are accumulated to form an internal representation of time, and a threshold that determines when a target duration has elapsed. However, clear EEG manifestations of these abstract components have not yet been identified. We measured the EEG of subjects while they performed a temporal bisection task in which they were requested to categorize visual stimuli as short or long in duration. We report an ERP component whose amplitude depends monotonically on the stimulus duration. The relation of the ERP amplitude and stimulus duration can be captured by a simple model, adapted from a known drift-diffusion model for time perception. It includes a noisy accumulator that starts with the stimulus onset and a threshold. If the threshold is reached during stimulus presentation, the stimulus is categorized as "long", otherwise the stimulus is categorized as "short". At the stimulus offset, a response proportional to the distance to the threshold is emitted. This simple model has two parameters that fit both the behavior and ERP amplitudes recorded in the task. Two subsequent experiments replicate and extend this finding to another modality (touch) as well as to different time ranges (subsecond and suprasecond), establishing the described ERP component as a useful handle on the cognitive processes involved in temporal decisions.