← Back

Temporal Coding

Topic spotlight
TopicWorld Wide

temporal coding

Discover seminars, jobs, and research tagged with temporal coding across World Wide.
7 curated items3 Seminars3 ePosters1 Position
Updated 1 day ago
7 items · temporal coding
7 results
SeminarNeuroscienceRecording

Perturbing the spatio-temporal organization of the grid cell network

Marianne Fyhn
University of Oslo
Dec 6, 2020
SeminarNeuroscienceRecording

The emergence and modulation of time in neural circuits and behavior

Luca Mazzucato
University of Oregon
Nov 24, 2020

Spontaneous behavior in animals and humans shows a striking amount of variability both in the spatial domain (which actions to choose) and temporal domain (when to act). Concatenating actions into sequences and behavioral plans reveals the existence of a hierarchy of timescales ranging from hundreds of milliseconds to minutes. How do multiple timescales emerge from neural circuit dynamics? How do circuits modulate temporal responses to flexibly adapt to changing demands? In this talk, we will present recent results from experiments and theory suggesting a new computational mechanism generating the temporal variability underlying naturalistic behavior. We will show how neural activity from premotor areas unfolds through temporal sequences of attractors, which predict the intention to act. These sequences naturally emerge from recurrent cortical networks, where correlated neural variability plays a crucial role in explaining the observed variability in action timing. We will then discuss how reaction times in these recurrent circuits can be accelerated or slowed down via gain modulation, induced by neuromodulation or perturbations. Finally, we will present a general mechanism producing a reservoir of multiple timescales in recurrent networks.

SeminarNeuroscienceRecording

On temporal coding in spiking neural networks with alpha synaptic function

Iulia M. Comsa
Google Research Zürich, Switzerland
Aug 30, 2020

The timing of individual neuronal spikes is essential for biological brains to make fast responses to sensory stimuli. However, conventional artificial neural networks lack the intrinsic temporal coding ability present in biological networks. We propose a spiking neural network model that encodes information in the relative timing of individual neuron spikes. In classification tasks, the output of the network is indicated by the first neuron to spike in the output layer. This temporal coding scheme allows the supervised training of the network with backpropagation, using locally exact derivatives of the postsynaptic spike times with respect to presynaptic spike times. The network operates using a biologically-plausible alpha synaptic transfer function. Additionally, we use trainable synchronisation pulses that provide bias, add flexibility during training and exploit the decay part of the alpha function. We show that such networks can be trained successfully on noisy Boolean logic tasks and on the MNIST dataset encoded in time. The results show that the spiking neural network outperforms comparable spiking models on MNIST and achieves similar quality to fully connected conventional networks with the same architecture. We also find that the spiking network spontaneously discovers two operating regimes, mirroring the accuracy-speed trade-off observed in human decision-making: a slow regime, where a decision is taken after all hidden neurons have spiked and the accuracy is very high, and a fast regime, where a decision is taken very fast but the accuracy is lower. These results demonstrate the computational power of spiking networks with biological characteristics that encode information in the timing of individual neurons. By studying temporal coding in spiking networks, we aim to create building blocks towards energy-efficient and more complex biologically-inspired neural architectures.

ePoster

The role of temporal coding in everyday hearing: evidence from deep neural networks

COSYNE 2022

ePoster

The role of temporal coding in everyday hearing: evidence from deep neural networks

COSYNE 2022

ePoster

Implications of synaptic noise on rate coding and temporal coding in the lateral superior olive: A dynamic-clamp study

Jonas Fisch, Eckhard Friauf

FENS Forum 2024