← Back

Temporal

Topic spotlight
TopicWorld Wide

temporal correlations

Discover seminars, jobs, and research tagged with temporal correlations across World Wide.
4 curated items3 Seminars1 ePoster
Updated over 3 years ago
4 items · temporal correlations
4 results
SeminarNeuroscience

An investigation of perceptual biases in spiking recurrent neural networks trained to discriminate time intervals

Nestor Parga
Autonomous University of Madrid (Universidad Autónoma de Madrid), Spain
Jun 7, 2022

Magnitude estimation and stimulus discrimination tasks are affected by perceptual biases that cause the stimulus parameter to be perceived as shifted toward the mean of its distribution. These biases have been extensively studied in psychophysics and, more recently and to a lesser extent, with neural activity recordings. New computational techniques allow us to train spiking recurrent neural networks on the tasks used in the experiments. This provides us with another valuable tool with which to investigate the network mechanisms responsible for the biases and how behavior could be modeled. As an example, in this talk I will consider networks trained to discriminate the durations of temporal intervals. The trained networks presented the contraction bias, even though they were trained with a stimulus sequence without temporal correlations. The neural activity during the delay period carried information about the stimuli of the current trial and previous trials, this being one of the mechanisms that originated the contraction bias. The population activity described trajectories in a low-dimensional space and their relative locations depended on the prior distribution. The results can be modeled as an ideal observer that during the delay period sees a combination of the current and the previous stimuli. Finally, I will describe how the neural trajectories in state space encode an estimate of the interval duration. The approach could be applied to other cognitive tasks.

SeminarNeuroscienceRecording

Computation in the neuronal systems close to the critical point

Anna Levina
Universität Tübingen
Apr 28, 2022

It was long hypothesized that natural systems might take advantage of the extended temporal and spatial correlations close to the critical point to improve their computational capabilities. However, on the other side, different distances to criticality were inferred from the recordings of nervous systems. In my talk, I discuss how including additional constraints on the processing time can shift the optimal operating point of the recurrent networks. Moreover, the data from the visual cortex of the monkeys during the attentional task indicate that they flexibly change the closeness to the critical point of the local activity. Overall it suggests that, as we would expect from common sense, the optimal state depends on the task at hand, and the brain adapts to it in a local and fast manner.

SeminarNeuroscience

A nonlinear shot noise model for calcium-based synaptic plasticity

Bin Wang
Aljadeff lab, University of California San Diego, USA
Dec 8, 2021

Activity dependent synaptic plasticity is considered to be a primary mechanism underlying learning and memory. Yet it is unclear whether plasticity rules such as STDP measured in vitro apply in vivo. Network models with STDP predict that activity patterns (e.g., place-cell spatial selectivity) should change much faster than observed experimentally. We address this gap by investigating a nonlinear calcium-based plasticity rule fit to experiments done in physiological conditions. In this model, LTP and LTD result from intracellular calcium transients arising almost exclusively from synchronous coactivation of pre- and postsynaptic neurons. We analytically approximate the full distribution of nonlinear calcium transients as a function of pre- and postsynaptic firing rates, and temporal correlations. This analysis directly relates activity statistics that can be measured in vivo to the changes in synaptic efficacy they cause. Our results highlight that both high-firing rates and temporal correlations can lead to significant changes to synaptic efficacy. Using a mean-field theory, we show that the nonlinear plasticity rule, without any fine-tuning, gives a stable, unimodal synaptic weight distribution characterized by many strong synapses which remain stable over long periods of time, consistent with electrophysiological and behavioral studies. Moreover, our theory explains how memories encoded by strong synapses can be preferentially stabilized by the plasticity rule. We confirmed our analytical results in a spiking recurrent network. Interestingly, although most synapses are weak and undergo rapid turnover, the fraction of strong synapses are sufficient for supporting realistic spiking dynamics and serve to maintain the network’s cluster structure. Our results provide a mechanistic understanding of how stable memories may emerge on the behavioral level from an STDP rule measured in physiological conditions. Furthermore, the plasticity rule we investigate is mathematically equivalent to other learning rules which rely on the statistics of coincidences, so we expect that our formalism will be useful to study other learning processes beyond the calcium-based plasticity rule.

ePoster

Humans can use positive and negative spectrotemporal correlations to detect rising and falling pitch

Parisa Vaziri, Damon Clark, Samuel McDougle

COSYNE 2025