Temporal Dynamics
temporal dynamics
Relating circuit dynamics to computation: robustness and dimension-specific computation in cortical dynamics
Neural dynamics represent the hard-to-interpret substrate of circuit computations. Advances in large-scale recordings have highlighted the sheer spatiotemporal complexity of circuit dynamics within and across circuits, portraying in detail the difficulty of interpreting such dynamics and relating it to computation. Indeed, even in extremely simplified experimental conditions, one observes high-dimensional temporal dynamics in the relevant circuits. This complexity can be potentially addressed by the notion that not all changes in population activity have equal meaning, i.e., a small change in the evolution of activity along a particular dimension may have a bigger effect on a given computation than a large change in another. We term such conditions dimension-specific computation. Considering motor preparatory activity in a delayed response task we utilized neural recordings performed simultaneously with optogenetic perturbations to probe circuit dynamics. First, we revealed a remarkable robustness in the detailed evolution of certain dimensions of the population activity, beyond what was thought to be the case experimentally and theoretically. Second, the robust dimension in activity space carries nearly all of the decodable behavioral information whereas other non-robust dimensions contained nearly no decodable information, as if the circuit was setup to make informative dimensions stiff, i.e., resistive to perturbations, leaving uninformative dimensions sloppy, i.e., sensitive to perturbations. Third, we show that this robustness can be achieved by a modular organization of circuitry, whereby modules whose dynamics normally evolve independently can correct each other’s dynamics when an individual module is perturbed, a common design feature in robust systems engineering. Finally, we will recent work extending this framework to understanding the neural dynamics underlying preparation of speech.
Where are you Moving? Assessing Precision, Accuracy, and Temporal Dynamics in Multisensory Heading Perception Using Continuous Psychophysics
Trends in NeuroAI - SwiFT: Swin 4D fMRI Transformer
Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri). Title: SwiFT: Swin 4D fMRI Transformer Abstract: Modeling spatiotemporal brain dynamics from high-dimensional data, such as functional Magnetic Resonance Imaging (fMRI), is a formidable task in neuroscience. Existing approaches for fMRI analysis utilize hand-crafted features, but the process of feature extraction risks losing essential information in fMRI scans. To address this challenge, we present SwiFT (Swin 4D fMRI Transformer), a Swin Transformer architecture that can learn brain dynamics directly from fMRI volumes in a memory and computation-efficient manner. SwiFT achieves this by implementing a 4D window multi-head self-attention mechanism and absolute positional embeddings. We evaluate SwiFT using multiple large-scale resting-state fMRI datasets, including the Human Connectome Project (HCP), Adolescent Brain Cognitive Development (ABCD), and UK Biobank (UKB) datasets, to predict sex, age, and cognitive intelligence. Our experimental outcomes reveal that SwiFT consistently outperforms recent state-of-the-art models. Furthermore, by leveraging its end-to-end learning capability, we show that contrastive loss-based self-supervised pre-training of SwiFT can enhance performance on downstream tasks. Additionally, we employ an explainable AI method to identify the brain regions associated with sex classification. To our knowledge, SwiFT is the first Swin Transformer architecture to process dimensional spatiotemporal brain functional data in an end-to-end fashion. Our work holds substantial potential in facilitating scalable learning of functional brain imaging in neuroscience research by reducing the hurdles associated with applying Transformer models to high-dimensional fMRI. Speaker: Junbeom Kwon is a research associate working in Prof. Jiook Cha’s lab at Seoul National University. Paper link: https://arxiv.org/abs/2307.05916
Interacting spiral wave patterns underlie complex brain dynamics and are related to cognitive processing
The large-scale activity of the human brain exhibits rich and complex patterns, but the spatiotemporal dynamics of these patterns and their functional roles in cognition remain unclear. Here by characterizing moment-by-moment fluctuations of human cortical functional magnetic resonance imaging signals, we show that spiral-like, rotational wave patterns (brain spirals) are widespread during both resting and cognitive task states. These brain spirals propagate across the cortex while rotating around their phase singularity centres, giving rise to spatiotemporal activity dynamics with non-stationary features. The properties of these brain spirals, such as their rotational directions and locations, are task relevant and can be used to classify different cognitive tasks. We also demonstrate that multiple, interacting brain spirals are involved in coordinating the correlated activations and de-activations of distributed functional regions; this mechanism enables flexible reconfiguration of task-driven activity flow between bottom-up and top-down directions during cognitive processing. Our findings suggest that brain spirals organize complex spatiotemporal dynamics of the human brain and have functional correlates to cognitive processing.
In vivo direct imaging of neuronal activity at high temporospatial resolution
Advanced noninvasive neuroimaging methods provide valuable information on the brain function, but they have obvious pros and cons in terms of temporal and spatial resolution. Functional magnetic resonance imaging (fMRI) using blood-oxygenation-level-dependent (BOLD) effect provides good spatial resolution in the order of millimeters, but has a poor temporal resolution in the order of seconds due to slow hemodynamic responses to neuronal activation, providing indirect information on neuronal activity. In contrast, electroencephalography (EEG) and magnetoencephalography (MEG) provide excellent temporal resolution in the millisecond range, but spatial information is limited to centimeter scales. Therefore, there has been a longstanding demand for noninvasive brain imaging methods capable of detecting neuronal activity at both high temporal and spatial resolution. In this talk, I will introduce a novel approach that enables Direct Imaging of Neuronal Activity (DIANA) using MRI that can dynamically image neuronal spiking activity in milliseconds precision, achieved by data acquisition scheme of rapid 2D line scan synchronized with periodically applied functional stimuli. DIANA was demonstrated through in vivo mouse brain imaging on a 9.4T animal scanner during electrical whisker-pad stimulation. DIANA with milliseconds temporal resolution had high correlations with neuronal spike activities, which could also be applied in capturing the sequential propagation of neuronal activity along the thalamocortical pathway of brain networks. In terms of the contrast mechanism, DIANA was almost unaffected by hemodynamic responses, but was subject to changes in membrane potential-associated tissue relaxation times such as T2 relaxation time. DIANA is expected to break new ground in brain science by providing an in-depth understanding of the hierarchical functional organization of the brain, including the spatiotemporal dynamics of neural networks.
Bridging clinical and cognitive neuroscience together to investigate semantics, above and beyond language
We will explore how neuropsychology can be leveraged to directly test cognitive neuroscience theories using the case of frontotemporal dementias affecting the language network. Specifically, we will focus on pathological, neuroimaging, and cognitive data from primary progressive aphasia. We will see how they can help us investigate the reading network, semantic knowledge organisation, and grammatical categories processing. Time permitting, the end of the talk will cover the temporal dynamics of semantic dimensions recovery and the role played by the task.
The role of astroglia-neuron interactions in generation and spread of seizures
Astroglia-neuron interactions are involved in multiple processes, regulating development, excitability and connectivity of neural circuits. Accumulating number of evidences highlight a direct connection between aberrant astroglial genetics and physiology in various forms of epilepsies. Using zebrafish seizure models, we showed that neurons and astroglia follow different spatiotemporal dynamics during transitions from pre-ictal to ictal activity. We observed that during pre-ictal period neurons exhibit local synchrony and low level of activity, whereas astroglia exhibit global synchrony and high-level of calcium signals that are anti correlated with neural activity. Instead, generalized seizures are marked by a massive release of astroglial glutamate release as well as a drastic increase of astroglia and neuronal activity and synchrony across the entire brain. Knocking out astroglial glutamate transporters leads to recurrent spontaneous generalized seizures accompanied with massive astroglial glutamate release. We are currently using a combination of genetic and pharmacological approaches to perturb astroglial glutamate signalling and astroglial gap junctions to further investigate their role in generation and spreading of epileptic seizures across the brain.
Online Training of Spiking Recurrent Neural Networks With Memristive Synapses
Spiking recurrent neural networks (RNNs) are a promising tool for solving a wide variety of complex cognitive and motor tasks, due to their rich temporal dynamics and sparse processing. However training spiking RNNs on dedicated neuromorphic hardware is still an open challenge. This is due mainly to the lack of local, hardware-friendly learning mechanisms that can solve the temporal credit assignment problem and ensure stable network dynamics, even when the weight resolution is limited. These challenges are further accentuated, if one resorts to using memristive devices for in-memory computing to resolve the von-Neumann bottleneck problem, at the expense of a substantial increase in variability in both the computation and the working memory of the spiking RNNs. In this talk, I will present our recent work where we introduced a PyTorch simulation framework of memristive crossbar arrays that enables accurate investigation of such challenges. I will show that recently proposed e-prop learning rule can be used to train spiking RNNs whose weights are emulated in the presented simulation framework. Although e-prop locally approximates the ideal synaptic updates, it is difficult to implement the updates on the memristive substrate due to substantial device non-idealities. I will mention several widely adapted weight update schemes that primarily aim to cope with these device non-idealities and demonstrate that accumulating gradients can enable online and efficient training of spiking RNN on memristive substrates.
Light-induced moderations in vitality and sleep in the field
Retinal light exposure is modulated by our behavior, and light exposure patterns show strong variations within and between persons. Yet, most laboratory studies investigated influences of constant lighting settings on human daytime functioning and sleep. In this presentation, I will discuss a series of studies investigating light-induced moderations in sleepiness, vitality and sleep, with a strong focus on the temporal dynamics in these effects, and the bi-directional relation between persons' light profiles and their behavior.
Functional segregation of rostral and caudal hippocampus in associative memory
It has long been established that the hippocampus plays a crucial role for episodic memory. As opposed to the modular approach, now it is generally assumed that being a complex structure, the HC performs multiplex interconnected functions, whose hierarchical organization provides basis for the higher cognitive functions such as semantics-based encoding and retrieval. However, the «where, when and how» properties of distinct memory aspects within and outside the HC are still under debate. Here we used a visual associative memory task as a probe to test the hypothesis about the differential involvement of the rostral and caudal portions of the human hippocampus in memory encoding, recognition and associative recall. In epilepsy patients implanted with stereo-EEG, we show that at retrieval the rostral HC is selectively active for recognition memory, whereas the caudal HC is selectively active for the associative memory. Low frequency desynchronization and high frequency synchronization characterize the temporal dynamic in encoding and retrieval. Therefore, we describe here anatomical segregation in the hippocampal contributions to associative and recognition memory.
Opponent processing in the expanded retinal mosaic of Nymphalid butterflies
In many butterflies, the ancestral trichromatic insect colour vision, based on UV-, blue- and green-sensitive photoreceptors, is extended with red-sensitive cells. Physiological evidence for red receptors has been missing in nymphalid butterflies, although some species can discriminate red hues well. In eight species from genera Archaeoprepona, Argynnis, Charaxes, Danaus, Melitaea, Morpho, Heliconius and Speyeria, we found a novel class of green-sensitive photoreceptors that have hyperpolarizing responses to stimulation with red light. These green-positive, red-negative (G+R–) cells are allocated to positions R1/2, normally occupied by UV and blue-sensitive cells. Spectral sensitivity, polarization sensitivity and temporal dynamics suggest that the red opponent units (R–) are the basal photoreceptors R9, interacting with R1/2 in the same ommatidia via direct inhibitory synapses. We found the G+R– cells exclusively in butterflies with red-shining ommatidia, which contain longitudinal screening pigments. The implementation of the red colour channel with R9 is different from pierid and papilionid butterflies, where cells R5–8 are the red receptors. The nymphalid red-green opponent channel and the potential for tetrachromacy seem to have been switched on several times during evolution, balancing between the cost of neural processing and the value of extended colour information.
NMC4 Short Talk: Two-Photon Imaging of Norepinephrine in the Prefrontal Cortex Shows that Norepinephrine Structures Cell Firing Through Local Release
Norepinephrine (NE) is a neuromodulator that is released from projections of the locus coeruleus via extra-synaptic vesicle exocytosis. Tonic fluctuations in NE are involved in brain states, such as sleep, arousal, and attention. Previously, NE in the PFC was thought to be a homogenous field created by bulk release, but it remains unknown whether phasic (fast, short-term) fluctuations in NE can produce a spatially heterogeneous field, which could then structure cell firing at a fine spatial scale. To understand how spatiotemporal dynamics of norepinephrine (NE) release in the prefrontal cortex affect neuronal firing, we performed a novel in-vivo two-photon imaging experiment in layer ⅔ of the prefrontal cortex using a green fluorescent NE sensor and a red fluorescent Ca2+ sensor, which allowed us to simultaneously observe fine-scale neuronal and NE dynamics in the form of spatially localized fluorescence time series. Using generalized linear modeling, we found that the local NE field differs from the global NE field in transient periods of decorrelation, which are influenced by proximal NE release events. We used optical flow and pattern analysis to show that release and reuptake events can occur at the same location but at different times, and differential recruitment of release and reuptake sites over time is a potential mechanism for creating a heterogeneous NE field. Our generalized linear models predicting cellular dynamics show that the heterogeneous local NE field, and not the global field, drives cell firing dynamics. These results point to the importance of local, small-scale, phasic NE fluctuations for structuring cell firing. Prior research suggests that these phasic NE fluctuations in the PFC may play a role in attentional shifts, orienting to sensory stimuli in the environment, and in the selective gain of priority representations during stress (Mather, Clewett et al. 2016) (Aston-Jones and Bloom 1981).
Homeostatic structural plasticity of neuronal connectivity triggered by optogenetic stimulation
Ever since Bliss and Lømo discovered the phenomenon of long-term potentiation (LTP) in rabbit dentate gyrus in the 1960s, Hebb’s rule—neurons that fire together wire together—gained popularity to explain learning and memory. Accumulating evidence, however, suggests that neural activity is homeostatically regulated. Homeostatic mechanisms are mostly interpreted to stabilize network dynamics. However, recent theoretical work has shown that linking the activity of a neuron to its connectivity within the network provides a robust alternative implementation of Hebb’s rule, although entirely based on negative feedback. In this setting, both natural and artificial stimulation of neurons can robustly trigger network rewiring. We used computational models of plastic networks to simulate the complex temporal dynamics of network rewiring in response to external stimuli. In parallel, we performed optogenetic stimulation experiments in the mouse anterior cingulate cortex (ACC) and subsequently analyzed the temporal profile of morphological changes in the stimulated tissue. Our results suggest that the new theoretical framework combining neural activity homeostasis and structural plasticity provides a consistent explanation of our experimental observations.
Change of mind in rapid free-choice picking scenarios
In a famous philosophical paradox, Buridan's ass perishes because he is equally hungry and thirsty, and cannot make up his mind whether to first drink or eat. We are faced daily with the need to pick between alternatives that are equally attractive (or not) to us. What are the processes that allow us to avoid paralysis and to rapidly select between such equal options when there are no preferences or rational reasons to rely on? One solution that was offered is that although on a higher cognitive level there is symmetry between the alternatives, on a neuronal level the symmetry does not maintain. What is the nature of this asymmetry of the neuronal level? In this talk I will present experiments addressing this important phenomenon using measures of human behavior, EEG, EMG and large scale neural network modeling, and discuss mechanisms involved in the process of intention formation and execution, in the face of alternatives to choose from. Specifically, I will show results revealing the temporal dynamics of rapid intention formation and, moreover, ‘change of intention’ in a free choice picking scenario, in which the alternatives are on a par for the participant. The results suggest that even in arbitrary choices, endogenous or exogenous biases that are present in the neural system for selecting one or another option may be implicitly overruled; thus creating an implicit and non-conscious ‘change of mind’. Finally, the question is raised: in what way do such rapid implicit ‘changes of mind’ help retain one’s self-control and free-will behavior?
Children's relational noun generalization strategies
A common result is that comparison settings (i.e., several stimuli introduced simultaneously) favor conceptualization and generalization. However still little is known of the solving strategies used by children to compare and generalize novel words. Understanding the temporal dynamics of children’s solving strategies may help assess which processes underlie generalization. We tested children in noun and relational noun generalization tasks and collected eye tracking data. To analyze and interpret the data we followed predictions made by existing models of analogical reasoning and generalization. The data reveals clear patterns of exploration in which participants compare learning items before searching for a solution. Analyses of the beginning of trials show that early comparisons favor generalization and that errors may be caused by a lake of early comparison. Children then pursue their search in different ways according to the task. In this presentation I will present the generalization strategies revealed by eye tracking, compare the strategies from both tasks and confront them to existing models.
Capacitance clamp - artificial capacitance in biological neurons via dynamic clamp
A basic time scale in neural dynamics from single cells to the network level is the membrane time constant - set by a neuron’s input resistance and its capacitance. Interestingly, the membrane capacitance appears to be more dynamic than previously assumed with implications for neural function and pathology. Indeed, altered membrane capacitance has been observed in reaction to physiological changes like neural swelling, but also in ageing and Alzheimer's disease. Importantly, according to theory, even small changes of the capacitance can affect neuronal signal processing, e.g. increase network synchronization or facilitate transmission of high frequencies. In experiment, robust methods to modify the capacitance of a neuron have been missing. Here, we present the capacitance clamp - an electrophysiological method for capacitance control based on an unconventional application of the dynamic clamp. In its original form, dynamic clamp mimics additional synaptic or ionic conductances by injecting their respective currents. Whereas a conductance directly governs a current, the membrane capacitance determines how fast the voltage responds to a current. Accordingly, capacitance clamp mimics an altered capacitance by injecting a dynamic current that slows down or speeds up the voltage response (Fig 1 A). For the required dynamic current, the experimenter only has to specify the original cell and the desired target capacitance. In particular, capacitance clamp requires no detailed model of present conductances and thus can be applied in every excitable cell. To validate the capacitance clamp, we performed numerical simulations of the protocol and applied it to modify the capacitance of cultured neurons. First, we simulated capacitance clamp in conductance based neuron models and analysed impedance and firing frequency to verify the altered capacitance. Second, in dentate gyrus granule cells from rats, we could reliably control the capacitance in a range of 75 to 200% of the original capacitance and observed pronounced changes in the shape of the action potentials: increasing the capacitance reduced after-hyperpolarization amplitudes and slowed down repolarization. To conclude, we present a novel tool for electrophysiology: the capacitance clamp provides reliable control over the capacitance of a neuron and thereby opens a new way to study the temporal dynamics of excitable cells.
The life of a mucosalivary droplet: Lessons from synthetic breaths and sneezes
The main transmission mode of the COVID-19 disease is through virus-laden aerosols and droplets generated by expiratory events, such as breathing and sneezing. Patients with respiratory diseases are typically treated with oxygenation devices in hospitals, homes, and other settings where they increase the risk of spreading the disease to caregivers and first responders. Here, I will discuss a systematic study of aerosol and droplet dispersal through the air and their final deposition on surfaces. Through laser and fluorescent imaging techniques, we measure the volumetric spatial-temporal dynamics of droplet dispersal while varying rheological properties of the mucosaliva. We then demonstrate that a standard nose and mouth mask reduces the amount of mucosaliva dispersed by a factor of at least a hundred. Our ongoing collaborations with doctors and respiratory therapists from the Baystate Medical Hospital are developing new guidelines to help mitigate disease spread in a hospital setting.
Neuronal variability and spatiotemporal dynamics in cortical network models
Neuronal variability is a reflection of recurrent circuitry and cellular physiology. The modulation of neuronal variability is a reliable signature of cognitive and processing state. A pervasive yet puzzling feature of cortical circuits is that despite their complex wiring, population-wide shared spiking variability is low dimensional with all neurons fluctuating en masse. We show that the spatiotemporal dynamics in a spatially structured network produce large population-wide shared variability. When the spatial and temporal scales of inhibitory coupling match known physiology, model spiking neurons naturally generate low dimensional shared variability that captures in vivo population recordings along the visual pathway. Further, we show that firing rate models with spatial coupling can also generate chaotic and low-dimensional rate dynamics. The chaotic parameter region expands when the network is driven by correlated noisy inputs, while being insensitive to the intensity of independent noise.
Organization and control of hippocampal circuits in epilepsy
Basket cells are key GABAergic inhibitory interneurons that target the somata and proximal dendrites, enabling efficient control of the timing and rate of spiking of their postsynaptic targets. In all cortical circuits, there are two major types of basket cell that exhibit striking developmental, molecular, anatomical, and physiological differences. In this talk, I will discuss recent results that reveal the tightly coupled complementarity of these two key microcircuit regulatory modules, demonstrating a novel form of brain-state-specific segregation of inhibition during spontaneous behavior, with implications for the assessment of dysregulated inhibition in epilepsy. In addition, I will describe recent advances in our understanding of the spatio-temporal dynamics of endocannabinoid signaling in hippocampal circuits and discuss how abnormal amplification of these activity-dependent signaling processes leads to surprising downstream effects in seizures.
Global AND Scale-Free? Spontaneous cortical dynamics between functional networks and cortico-hippocampal communication
Recent advancements in anatomical and functional imaging emphasize the presence of whole-brain networks organized according to functional and connectivity gradients, but how such structure shapes activity propagation and memory processes still lacks asatisfactory model. We analyse the fine-grained spatiotemporal dynamics of spontaneous activity in the entire dorsal cortex. through simultaneous recordings of wide-field voltage sensitive dye transients (VS), cortical ECoG, and hippocampal LFP in anesthetized mice. Both VS and ECoG show cortical avalanches. When measuring avalanches from the VS signal, we find a major deviation of the size scaling from the power-law distribution predicted by the criticality hypothesis and well approximated by the results from the ECoG. Breaking from scale-invariance, avalanches can thus be grouped in two regimes. Small avalanches consists of a limited number of co-activation modes involving a sub-set of cortical networks (related to the Default Mode Network), while larger avalanches involve a substantial portion of the cortical surface and can be clustered into two families: one immediately preceded by Retrosplenial Cortex activation and mostly involving medial-posterior networks, the other initiated by Somatosensory Cortex and extending preferentially along the lateral-anterior region. Rather than only differing in terms of size, these two set of events appear to be associated with markedly different brain-wide dynamical states: they are accompaniedby a shift in the hippocampal LFP, from the ripple band (smaller) to the gamma band (larger avalanches), and correspond to opposite directionality in the cortex-to-hippocampus causal relationship. These results provide a concrete description of global cortical dynamics, and shows how cortex in its entirety is involved in bi-directional communication in the hippocampus even in sleep-like states.
SARC-CoV-2 modeling: What have we learned from this pandemic about how (not) to model disease spread?
The SARS-CoV-2 pandemic is awash in data, including daily, spatially-resolved COVID case data, virus sequence data, patients `omics data, and mobility data. Journals are now also awash in studies that make use of quantitative modeling approaches to gain insight into the geographic spread of SARS-CoV-2 and its temporal dynamics, as well as studies that predict the impact of control strategies on SARS-CoV-2 circulation. Some, but by no means all, of these studies are informed by the massive amounts of available data. Some, but by no means all, of these studies have been useful — in that their predictions revealed something beyond simple back of the envelope calculations. To summarize some of these findings, in this symposium, we will address questions such as: What do we want from models of disease spread? What can and should be predicted? Which data are the most useful for predictions? When do we need mechanistic models? What have we learned about how to model disease spread from unmet and/or conflicting predictions? The workshop speakers will explore these questions from different perspectives on what data need to be considered and how models can be evaluated. As at other TMLS workshops, each speaker will deliver a 10-minute talk with ample time set aside for moderated questions/discussion. We expect the talks to be provocative and bold, while respecting different perspectives.
Targeting the synapse in Alzheimer’s Disease
Alzheimer’s Disease is characterised by the accumulation of misfolded proteins, namely amyloid and tau, however it is synapse loss which leads to the cognitive impairments associated with the disease. Many studies have focussed on single time points to determine the effects of pathology on synapses however this does not inform on the plasticity of the synapses, that is how they behave in vivo as the pathology progresses. Here we used in vivo two-photon microscopy to assess the temporal dynamics of axonal boutons and dendritic spines in mouse models of tauopathy[1] (rTg4510) and amyloidopathy[2] (J20). This revealed that pre- and post-synaptic components are differentially affected in both AD models in response to pathology. In the Tg4510 model, differences in the stability and turnover of axonal boutons and dendritic spines immediately prior to neurite degeneration was revealed. Moreover, the dystrophic neurites could be partially rescued by transgene suppression. Understanding the imbalance in the response of pre- and post-synaptic components is crucial for drug discovery studies targeting the synapse in Alzheimer’s Disease. To investigate how sub-types of synapses are affected in human tissue, the Multi-‘omics Atlas Project, a UKDRI initiative to comprehensively map the pathology in human AD, will determine the synaptome changes using imaging and synaptic proteomics in human post mortem AD tissue. The use of multiple brain regions and multiple stages of disease will enable a pseudotemporal profile of pathology and the associated synapse alterations to be determined. These data will be compared to data from preclinical models to determine the functional implications of the human findings, to better inform preclinical drug discovery studies and to develop a therapeutic strategy to target synapses in Alzheimer’s Disease[3].
Is it Autism or Alexithymia? explaining atypical socioemotional processing
Emotion processing is thought to be impaired in autism and linked to atypical visual exploration and arousal modulation to others faces and gaze, yet evidence is equivocal. We propose that, where observed, atypical socioemotional processing is due to alexithymia, a distinct but frequently co-occurring condition which affects emotional self-awareness and Interoception. In study 1 (N = 80), we tested this hypothesis by studying the spatio-temporal dynamics and entropy of eye-gaze during emotion processing tasks. Evidence from traditional and novel methods revealed that atypical eye-gaze and emotion recognition is best predicted by alexithymia in both autistic and non-autistic individuals. In Study 2 (N = 70), we assessed interoceptive and autonomic signals implicated in socioemotional processing, and found evidence for alexithymia (not autism) driven effects on gaze and arousal modulation to emotions. We also conducted two large-scale studies (N = 1300), using confirmatory factor-analytic and network modelling and found evidence that Alexithymia and Autism are distinct at both a latent level and their intercorrelations. We argue that: 1) models of socioemotional processing in autism should conceptualise difficulties as intrinsic to alexithymia, and 2) assessment of alexithymia is crucial for diagnosis and personalised interventions in autism.
Uncovering the temporal dynamics of scene understanding using Event-Related Potentials
Unifying fast and slow temporal dynamics of AMPARs during Long-Term Potentiation
Bernstein Conference 2024
Spatiotemporal dynamics and targeted functions of locus coeruleus norepinephrine in a learned behavior
COSYNE 2022
Spatiotemporal dynamics and targeted functions of locus coeruleus norepinephrine in a learned behavior
COSYNE 2022
Temporal Dynamics in an Attractor Model of the Songbird’s Premotor Nucleus.
COSYNE 2022
Temporal Dynamics in an Attractor Model of the Songbird’s Premotor Nucleus.
COSYNE 2022
Widespread representations of sensory evidence with distinct temporal dynamics across the sensorimotor axis
COSYNE 2022
Widespread representations of sensory evidence with distinct temporal dynamics across the sensorimotor axis
COSYNE 2022
Decoding Object Depth from the Macaque IT Cortex: Temporal Dynamics and Insights for ANN Models
COSYNE 2025
Expectation-modulated temporal dynamics in a sensory neural population during behavior.
COSYNE 2025
Cortex-wide high-density ECoG and translaminar local field potential recordings reveal rich broad-band spatio-temporal dynamics
FENS Forum 2024
Developmental and temporal dynamics in cognitive control engagement during explicit learning
FENS Forum 2024
Electrical stimulation over the parietal cortex induces spatial bias by mediating the influence of visuospatial attention on the temporal dynamics of visuocortical processing
FENS Forum 2024
Spatio-temporal dynamics of striatal astrocyte neurogenic activation after injury reveal widespread potential beyond known niches
FENS Forum 2024
Temporal dynamics of heartbeat-evoked potentials in comatose patients in long continuous recordings
FENS Forum 2024
Temporal dynamics of neural activity and connectivity patterns in executive function training
FENS Forum 2024
Temporal dynamics of neuronal excitability in the lateral amygdala mediates allocation to an engram supporting conditioned fear memory
FENS Forum 2024
Temporal dynamics of presynaptic BRP and postsynaptic GluRIID proteins in Drosophila larval synapses
FENS Forum 2024