Temporal Predictions
temporal predictions
Sampling the environment with body-brain rhythms
Since Darwin, comparative research has shown that most animals share basic timing capacities, such as the ability to process temporal regularities and produce rhythmic behaviors. What seems to be more exclusive, however, are the capacities to generate temporal predictions and to display anticipatory behavior at salient time points. These abilities are associated with subcortical structures like basal ganglia (BG) and cerebellum (CE), which are more developed in humans as compared to nonhuman animals. In the first research line, we investigated the basic capacities to extract temporal regularities from the acoustic environment and produce temporal predictions. We did so by adopting a comparative and translational approach, thus making use of a unique EEG dataset including 2 macaque monkeys, 20 healthy young, 11 healthy old participants and 22 stroke patients, 11 with focal lesions in the BG and 11 in the CE. In the second research line, we holistically explore the functional relevance of body-brain physiological interactions in human behavior. Thus, a series of planned studies investigate the functional mechanisms by which body signals (e.g., respiratory and cardiac rhythms) interact with and modulate neurocognitive functions from rest and sleep states to action and perception. This project supports the effort towards individual profiling: are individuals’ timing capacities (e.g., rhythm perception and production), and general behavior (e.g., individual walking and speaking rates) influenced / shaped by body-brain interactions?
Motor contribution to auditory temporal predictions
Temporal predictions are fundamental instruments for facilitating sensory selection, allowing humans to exploit regularities in the world. Recent evidence indicates that the motor system instantiates predictive timing mechanisms, helping to synchronize temporal fluctuations of attention with the timing of events in a task-relevant stream, thus facilitating sensory selection. Accordingly, in the auditory domain auditory-motor interactions are observed during perception of speech and music, two temporally structured sensory streams. I will present a behavioral and neurophysiological account for this theory and will detail the parameters governing the emergence of this auditory-motor coupling, through a set of behavioral and magnetoencephalography (MEG) experiments.