← Back

Temporal Scales

Topic spotlight
TopicWorld Wide

temporal scales

Discover seminars, jobs, and research tagged with temporal scales across World Wide.
9 curated items9 Seminars
Updated about 1 year ago
9 items · temporal scales
9 results
SeminarNeuroscience

LLMs and Human Language Processing

Maryia Toneva, Ariel Goldstein, Jean-Remi King
Max Planck Institute of Software Systems; Hebrew University; École Normale Supérieure
Nov 28, 2024

This webinar convened researchers at the intersection of Artificial Intelligence and Neuroscience to investigate how large language models (LLMs) can serve as valuable “model organisms” for understanding human language processing. Presenters showcased evidence that brain recordings (fMRI, MEG, ECoG) acquired while participants read or listened to unconstrained speech can be predicted by representations extracted from state-of-the-art text- and speech-based LLMs. In particular, text-based LLMs tend to align better with higher-level language regions, capturing more semantic aspects, while speech-based LLMs excel at explaining early auditory cortical responses. However, purely low-level features can drive part of these alignments, complicating interpretations. New methods, including perturbation analyses, highlight which linguistic variables matter for each cortical area and time scale. Further, “brain tuning” of LLMs—fine-tuning on measured neural signals—can improve semantic representations and downstream language tasks. Despite open questions about interpretability and exact neural mechanisms, these results demonstrate that LLMs provide a promising framework for probing the computations underlying human language comprehension and production at multiple spatiotemporal scales.

SeminarNeuroscience

Brain-Wide Compositionality and Learning Dynamics in Biological Agents

Kanaka Rajan
Harvard Medical School
Nov 12, 2024

Biological agents continually reconcile the internal states of their brain circuits with incoming sensory and environmental evidence to evaluate when and how to act. The brains of biological agents, including animals and humans, exploit many evolutionary innovations, chiefly modularity—observable at the level of anatomically-defined brain regions, cortical layers, and cell types among others—that can be repurposed in a compositional manner to endow the animal with a highly flexible behavioral repertoire. Accordingly, their behaviors show their own modularity, yet such behavioral modules seldom correspond directly to traditional notions of modularity in brains. It remains unclear how to link neural and behavioral modularity in a compositional manner. We propose a comprehensive framework—compositional modes—to identify overarching compositionality spanning specialized submodules, such as brain regions. Our framework directly links the behavioral repertoire with distributed patterns of population activity, brain-wide, at multiple concurrent spatial and temporal scales. Using whole-brain recordings of zebrafish brains, we introduce an unsupervised pipeline based on neural network models, constrained by biological data, to reveal highly conserved compositional modes across individuals despite the naturalistic (spontaneous or task-independent) nature of their behaviors. These modes provided a scaffolding for other modes that account for the idiosyncratic behavior of each fish. We then demonstrate experimentally that compositional modes can be manipulated in a consistent manner by behavioral and pharmacological perturbations. Our results demonstrate that even natural behavior in different individuals can be decomposed and understood using a relatively small number of neurobehavioral modules—the compositional modes—and elucidate a compositional neural basis of behavior. This approach aligns with recent progress in understanding how reasoning capabilities and internal representational structures develop over the course of learning or training, offering insights into the modularity and flexibility in artificial and biological agents.

SeminarNeuroscience

Dynamic endocrine modulation of the nervous system

Emily Jabocs
US Santa Barbara Neuroscience
Apr 17, 2023

Sex hormones are powerful neuromodulators of learning and memory. In rodents and nonhuman primates estrogen and progesterone influence the central nervous system across a range of spatiotemporal scales. Yet, their influence on the structural and functional architecture of the human brain is largely unknown. Here, I highlight findings from a series of dense-sampling neuroimaging studies from my laboratory designed to probe the dynamic interplay between the nervous and endocrine systems. Individuals underwent brain imaging and venipuncture every 12-24 hours for 30 consecutive days. These procedures were carried out under freely cycling conditions and again under a pharmacological regimen that chronically suppresses sex hormone production. First, resting state fMRI evidence suggests that transient increases in estrogen drive robust increases in functional connectivity across the brain. Time-lagged methods from dynamical systems analysis further reveals that these transient changes in estrogen enhance within-network integration (i.e. global efficiency) in several large-scale brain networks, particularly Default Mode and Dorsal Attention Networks. Next, using high-resolution hippocampal subfield imaging, we found that intrinsic hormone fluctuations and exogenous hormone manipulations can rapidly and dynamically shape medial temporal lobe morphology. Together, these findings suggest that neuroendocrine factors influence the brain over short and protracted timescales.

SeminarNeuroscienceRecording

Memory-enriched computation and learning in spiking neural networks through Hebbian plasticity

Thomas Limbacher
TU Graz
Nov 8, 2022

Memory is a key component of biological neural systems that enables the retention of information over a huge range of temporal scales, ranging from hundreds of milliseconds up to years. While Hebbian plasticity is believed to play a pivotal role in biological memory, it has so far been analyzed mostly in the context of pattern completion and unsupervised learning. Here, we propose that Hebbian plasticity is fundamental for computations in biological neural systems. We introduce a novel spiking neural network (SNN) architecture that is enriched by Hebbian synaptic plasticity. We experimentally show that our memory-equipped SNN model outperforms state-of-the-art deep learning mechanisms in a sequential pattern-memorization task, as well as demonstrate superior out-of-distribution generalization capabilities compared to these models. We further show that our model can be successfully applied to one-shot learning and classification of handwritten characters, improving over the state-of-the-art SNN model. We also demonstrate the capability of our model to learn associations for audio to image synthesis from spoken and handwritten digits. Our SNN model further presents a novel solution to a variety of cognitive question answering tasks from a standard benchmark, achieving comparable performance to both memory-augmented ANN and SNN-based state-of-the-art solutions to this problem. Finally we demonstrate that our model is able to learn from rewards on an episodic reinforcement learning task and attain near-optimal strategy on a memory-based card game. Hence, our results show that Hebbian enrichment renders spiking neural networks surprisingly versatile in terms of their computational as well as learning capabilities. Since local Hebbian plasticity can easily be implemented in neuromorphic hardware, this also suggests that powerful cognitive neuromorphic systems can be build based on this principle.

SeminarNeuroscience

The functional connectome across temporal scales

Sepideh Sadaghiani
Assistant Professor, University of Illinois, USA
Mar 29, 2022

The view of human brain function has drastically shifted over the last decade, owing to the observation that the majority of brain activity is intrinsic rather than driven by external stimuli or cognitive demands. Specifically, all brain regions continuously communicate in spatiotemporally organized patterns that constitute the functional connectome, with consequences for cognition and behavior. In this talk, I will argue that another shift is underway, driven by new insights from synergistic interrogation of the functional connectome using different acquisition methods. The human functional connectome is typically investigated with functional magnetic resonance imaging (fMRI) that relies on the indirect hemodynamic signal, thereby emphasizing very slow connectivity across brain regions. Conversely, more recent methodological advances demonstrate that fast connectivity within the whole-brain connectome can be studied with real-time methods such as electroencephalography (EEG). Our findings show that combining fMRI with scalp or intracranial EEG in humans, especially when recorded concurrently, paints a rich picture of neural communication across the connectome. Specifically, the connectome comprises both fast, oscillation-based connectivity observable with EEG, as well as extremely slow processes best captured by fMRI. While the fast and slow processes share an important degree of spatial organization, these processes unfold in a temporally independent manner. Our observations suggest that fMRI and EEG may be envisaged as capturing distinct aspects of functional connectivity, rather than intermodal measurements of the same phenomenon. Infraslow fluctuation-based and rapid oscillation-based connectivity of various frequency bands constitute multiple dynamic trajectories through a shared state space of discrete connectome configurations. The multitude of flexible trajectories may concurrently enable functional connectivity across multiple independent sets of distributed brain regions.

SeminarNeuroscienceRecording

Neuronal variability and spatiotemporal dynamics in cortical network models

Chengcheng Huang
University of Pittsburgh
May 18, 2021

Neuronal variability is a reflection of recurrent circuitry and cellular physiology. The modulation of neuronal variability is a reliable signature of cognitive and processing state. A pervasive yet puzzling feature of cortical circuits is that despite their complex wiring, population-wide shared spiking variability is low dimensional with all neurons fluctuating en masse. We show that the spatiotemporal dynamics in a spatially structured network produce large population-wide shared variability. When the spatial and temporal scales of inhibitory coupling match known physiology, model spiking neurons naturally generate low dimensional shared variability that captures in vivo population recordings along the visual pathway. Further, we show that firing rate models with spatial coupling can also generate chaotic and low-dimensional rate dynamics. The chaotic parameter region expands when the network is driven by correlated noisy inputs, while being insensitive to the intensity of independent noise.

SeminarOpen SourceRecording

A macaque connectome for simulating large-scale network dynamics in The VirtualBrain

Kelly Shen
University of Toronto
Apr 29, 2021

TheVirtualBrain (TVB; thevirtualbrain.org) is a software platform for simulating whole-brain network dynamics. TVB models link biophysical parameters at the cellular level with systems-level functional neuroimaging signals. Data available from animal models can provide vital constraints for the linkage across spatial and temporal scales. I will describe the construction of a macaque cortical connectome as an initial step towards a comprehensive multi-scale macaque TVB model. I will also describe our process of validating the connectome and show an example simulation of macaque resting-state dynamics using TVB. This connectome opens the opportunity for the addition of other available data from the macaque, such as electrophysiological recordings and receptor distributions, to inform multi-scale models of brain dynamics. Future work will include extensions to neurological conditions and other nonhuman primate species.

SeminarNeuroscienceRecording

Cortical networks for flexible decisions during spatial navigation

Christopher Harvey
Harvard University
Feb 18, 2021

My lab seeks to understand how the mammalian brain performs the computations that underlie cognitive functions, including decision-making, short-term memory, and spatial navigation, at the level of the building blocks of the nervous system, cell types and neural populations organized into circuits. We have developed methods to measure, manipulate, and analyze neural circuits across various spatial and temporal scales, including technology for virtual reality, optical imaging, optogenetics, intracellular electrophysiology, molecular sensors, and computational modeling. I will present recent work that uses large scale calcium imaging to reveal the functional organization of the mouse posterior cortex for flexible decision-making during spatial navigation in virtual reality. I will also discuss work that uses optogenetics and calcium imaging during a variety of decision-making tasks to highlight how cognitive experience and context greatly alter the cortical circuits necessary for navigation decisions.