← Back

Thalamic Neurons

Topic spotlight
TopicWorld Wide

thalamic neurons

Discover seminars, jobs, and research tagged with thalamic neurons across World Wide.
11 curated items7 Seminars4 ePosters
Updated almost 3 years ago
11 items · thalamic neurons
11 results
SeminarNeuroscienceRecording

Orientation selectivity in rodent V1: theory vs experiments

German Mato
CONICET, Bariloche
Feb 14, 2023

Neurons in the primary visual cortex (V1) of rodents are selective to the orientation of the stimulus, as in other mammals such as cats and monkeys. However, in contrast with those species, their neurons display a very different type of spatial organization. Instead of orientation maps they are organized in a “salt and pepper” pattern, where adjacent neurons have completely different preferred orientations. This structure has motivated both experimental and theoretical research with the objective of determining which aspects of the connectivity patterns and intrinsic neuronal responses can explain the observed behavior. These analysis have to take into account also that the neurons of the thalamus that send their outputs to the cortex have more complex responses in rodents than in higher mammals, displaying, for instance, a significant degree of orientation selectivity. In this talk we present work showing that a random feed-forward connectivity pattern, in which the probability of having a connection between a cortical neuron and a thalamic neuron depends only on the relative distance between them is enough explain several aspects of the complex phenomenology found in these systems. Moreover, this approach allows us to evaluate analytically the statistical structure of the thalamic input on the cortex. We find that V1 neurons are orientation selective but the preferred orientation of the stimulus depends on the spatial frequency of the stimulus. We disentangle the effect of the non circular thalamic receptive fields, finding that they control the selectivity of the time-averaged thalamic input, but not the selectivity of the time locked component. We also compare with experiments that use reverse correlation techniques, showing that ON and OFF components of the aggregate thalamic input are spatially segregated in the cortex.

SeminarNeuroscience

The development of hunger

Marcelo Dietrich
Yale
Oct 17, 2021

All mammals transition from breastfeeding to independent feeding during the lactation period. In humans and other mammals, this critical transition is important for later in life metabolic control and, consequently, for the development of many chronic conditions. Here, Dr. Dietrich will discuss the work of his lab studying the function of hypothalamic neurons involved in homeostatic control during the transition from breastfeeding to independent feeding. His work illuminates novel properties of hypothalamic neurons in early life, suggesting mechanisms by which early life events shape homeostatic regulation throughout the individual’s lifespan.

SeminarNeuroscience

Estimation of current and future physiological states in insular cortex

Mark Andermann
Harvard University
Jun 28, 2021

Interoception, the sense of internal bodily signals, is essential for physiological homeostasis, cognition, and emotions. While human insular cortex (InsCtx) is implicated in interoception, the cellular and circuit mechanisms remain unclear. I will describe our recent work imaging mouse InsCtx neurons during two physiological deficiency states – hunger and thirst. InsCtx ongoing activity patterns reliably tracked the gradual return to homeostasis, but not changes in behavior. Accordingly, while artificial induction of hunger/thirst in sated mice via activation of specific hypothalamic neurons (AgRP/SFOGLUT) restored cue-evoked food/water-seeking, InsCtx ongoing activity continued to reflect physiological satiety. During natural hunger/thirst, food/water cues rapidly and transiently shifted InsCtx population activity to the future satiety-related pattern. During artificial hunger/thirst, food/water cues further shifted activity beyond the current satiety-related pattern. Together with circuit-mapping experiments, these findings suggest that InsCtx integrates visceral-sensory inputs regarding current physiological state with hypothalamus-gated amygdala inputs signaling upcoming ingestion of food/water, to compute a prediction of future physiological state.

SeminarNeuroscience

Brain-body interactions in the metabolic/nutritional control of puberty: Neuropeptide pathways and central energy sensors

Manuel Tena-Sempere
IMIBIC Cordoba
May 30, 2021

Puberty is a brain-driven phenomenon, which is under the control of sophisticated regulatory networks that integrate a large number of endogenous and environmental signals, including metabolic and nutritional cues. Puberty onset is tightly bound to the state of body energy reserves, and deregulation of energy/metabolic homeostasis is often associated with alterations in the timing of puberty. However, despite recent progress in the field, our knowledge of the specific molecular mechanisms and pathways whereby our brain decode metabolic information to modulate puberty onset remains fragmentary and incomplete. Compelling evidence, gathered over the last fifteen years, supports an essential role of hypothalamic neurons producing kisspeptins, encoded by Kiss1, in the neuroendocrine control of puberty. Kiss1 neurons are major components of the hypothalamic GnRH pulse generator, whose full activation is mandatory pubertal onset. Kiss1 neurons seemingly participate in transmitting the regulatory actions of metabolic cues on pubertal maturation. However, the modulatory influence of metabolic signals (e.g., leptin) on Kiss1 neurons might be predominantly indirect and likely involves also the interaction with other transmitters and neuronal populations. In my presentation, I will review herein recent work of our group, using preclinical models, addressing the molecular mechanisms whereby Kiss1 neurons are modulated by metabolic signals, and thereby contribute to the nutritional control of puberty. In this context, the putative roles of the energy/metabolic sensors, AMP-activated protein kinase (AMPK) and SIRT1, in the metabolic control of Kiss1 neurons and puberty will be discussed. In addition, I will summarize recent findings from our team pointing out a role of central de novo ceramide signaling in mediating the impact of obesity of (earlier) puberty onset, via non-canonical, kisspeptin-related pathways. These findings are posed of translational interest, as perturbations of these molecular pathways could contribute to the alterations of pubertal timing linked to conditions of metabolic stress in humans, ranging from malnutrition to obesity, and might become druggable targets for better management of pubertal disorders.

SeminarNeuroscience

Using human pluripotent stem cells to model obesity in vitro

Florian Merkle
University of Cambridge
Apr 14, 2021

Obesity and neurodegeneration lead to millions of premature deaths each year and lack broadly effective treatments. Obesity is largely caused by the abnormal function of cell populations in the hypothalamus that regulate appetite. We have developed methods generate human hypothalamic neurons from hPSCs to study how they respond to nutrients and hormones (e.g. leptin) and how disease-associated mutations alter their function. Since human hypothalamic neurons can be produced in large numbers, are functionally responsive, have a human genome that can be readily edited, and are in culture environment that can be readily controlled, there is an unprecedented opportunity to study the genetic and environmental factors underlying obesity. In addition, we are fascinated by the fact that mid-life obesity is a risk factor for dementia later in life, and caloric restriction, exercise, and certain anti-obesity drugs are neuroprotective, suggesting that there are shared mechanisms between obesity and neurodegeneration. Studies of HPSC-derived hypothalamic neurons may help bridge the mechanistic gulf between human genetic data and organismic phenotypes, revealing new therapeutic targets. ​

SeminarNeuroscienceRecording

Cortical estimation of current and future bodily states

Yoav Livneh
Weizmann Institute of Science
Nov 1, 2020

Interoception, the sense of internal bodily signals, is essential for physiological homeostasis, cognition, and emotions. Human neuroimaging studies suggest insular cortex plays a central role in interoception, yet the cellular and circuit mechanisms of its involvement remain unclear. We developed a microprism-based cellular imaging approach to monitor insular cortex activity in behaving mice across different physiological need states. We combine this imaging approach with manipulations of peripheral physiology, circuit-mapping, cell type-specific and circuit-specific manipulation approaches to investigate the underlying circuit mechanisms. I will present our recent data investigating insular cortex activity during two physiological need states – hunger and thirst. These wereinduced naturally by caloric/fluid deficiency, or artificially by activation of specific hypothalamic “hunger neurons” and “thirst neurons”. We found that insular cortex ongoing activity faithfully represents current physiological state, independently of behavior or arousal levels. In contrast, transient responses to learned food- or water-predicting cues reflect a population-level “simulation” of future predicted satiety. Together with additional circuit-mapping and manipulation experiments, our findings suggest that insular cortex integrates visceral-sensory inputs regarding current physiological state with hypothalamus-gated amygdala inputs signaling availability of food/water. This way, insular cortex computes a prediction of future physiological state that can be used to guide behavioral choice.

ePoster

Contribution of anterodorsal thalamic neurons to orientation coding and their dysfunction in a novel virus-based tauopathy mouse model

Shan Jiang, Sara Hijazi, Verena Gautsch, Barbara Sarkany, David Bannerman, Tim Viney

FENS Forum 2024

ePoster

Intermale aggression is inhibited by posterior intralaminar thalamic neurons in rats

Tamás Láng, Botond Drahos, Dávid Keller, Árpád Dobolyi

FENS Forum 2024

ePoster

Subpopulation of thalamic neurons possesses distinct anatomical connectivities and electrophysiological properties in the anterior thalamic nucleus

Dongkyun Lim, Michael Graupner, Desdemona Fricker

FENS Forum 2024

ePoster

Uncovering schizophrenia through patient iPSC-derived thalamic neurons

Marilyn M. Angulo Salavarria, Claudia Dell’Amico, Elena Rita Vecchi, Michela Giacich, Claudia Vittoria Oimeda, Francesco Luciano Donati, Anna Castelnovo, Marta Re, Eleonora Maggioni, Paolo Brambilla, Armando D’Agostino, Luciano Conti, Marco Onorati

FENS Forum 2024