← Back

Thalamic Nuclei

Topic spotlight
TopicWorld Wide

thalamic nuclei

Discover seminars, jobs, and research tagged with thalamic nuclei across World Wide.
5 curated items5 Seminars
Updated about 2 years ago
5 items · thalamic nuclei
5 results
SeminarNeuroscienceRecording

Diffuse coupling in the brain - A temperature dial for computation

Eli Müller
The University of Sydney
Oct 5, 2023

The neurobiological mechanisms of arousal and anesthesia remain poorly understood. Recent evidence highlights the key role of interactions between the cerebral cortex and the diffusely projecting matrix thalamic nuclei. Here, we interrogate these processes in a whole-brain corticothalamic neural mass model endowed with targeted and diffusely projecting thalamocortical nuclei inferred from empirical data. This model captures key features seen in propofol anesthesia, including diminished network integration, lowered state diversity, impaired susceptibility to perturbation, and decreased corticocortical coherence. Collectively, these signatures reflect a suppression of information transfer across the cerebral cortex. We recover these signatures of conscious arousal by selectively stimulating the matrix thalamus, recapitulating empirical results in macaque, as well as wake-like information processing states that reflect the thalamic modulation of largescale cortical attractor dynamics. Our results highlight the role of matrix thalamocortical projections in shaping many features of complex cortical dynamics to facilitate the unique communication states supporting conscious awareness.

SeminarNeuroscience

Identifying central mechanisms of glucocorticoid circadian rhythm dysfunction in breast cancer

Jeremy C. Borniger
Cold Spring Harbor Laboratory
Oct 17, 2022

The circadian release of endogenous glucocorticoids is essential in preparing and synchronizing the body’s daily physiological needs. Disruption in the rhythmic activity of glucocorticoids has been observed in individuals with a variety of cancer types, and blunting of this rhythm has been shown to predict cancer mortality and declines in quality of life. This suggests that a disrupted glucocorticoid rhythm is potentially a shared phenotype across cancers. However, where this phenomenon is driven by the cancer itself, and the causal mechanisms that link glucocorticoid rhythm dysfunction and cancer outcomes remain preliminary at best. The regulation of daily glucocorticoid activity has been well-characterized and is maintained, in part, by the coordinated response of the hypothalamic-pituitary-adrenal (HPA) axis, consisting of the suprachiasmatic nucleus (SCN) and corticotropin-releasing hormone-expressing neurons of the paraventricular nucleus of the hypothalamus (PVNCRH). Consequently, we set out to examine if cancer-induced glucocorticoid dysfunction is regulated by disruptions within these hypothalamic nuclei. In comparison to their tumor-free baseline, mammary tumor-bearing mice exhibited a blunting of glucocorticoid rhythms across multiple timepoints throughout the day, as measured by the overall levels and the slope of fecal corticosterone rhythms, during tumor progression. We further examined how peripheral tumors shape hypothalamic activity within the brain. Serial two-photon tomography for whole-brain cFos imaging suggests a disrupted activation of the PVN in mice with tumors. Additionally, we found GFP labeled CRH+ neurons within the PVN after injection of pseudorabies virus expressing GFP into the tumor, pointing to the PVN as a primary target disrupted by mammary tumors. Preliminary in vivo fiber photometry data show that PVNCRH neurons exhibit enhanced calcium activity during tumor progression, as compared to baseline (no tumor) activity. Taken together, this suggests that there may be an overactive HPA response during tumor progression, which in turn, may result in a subsequent negative feedback on glucocorticoid rhythms. Current studies are examining whether tumor progression modulates SCN calcium activity, how the transcriptional profile of PVNCRH neurons is changed, and test if manipulation of the neurocircuitry surrounding glucocorticoid rhythmicity alters tumor characteristics.

SeminarNeuroscience

Thalamocortical circuits from neuroanatomy to mental representations

Mathieu Wolff
INCIA - University of Bordeaux / CNRS
May 27, 2021

In highly volatile environments, performing actions that address current needs and desires is an ongoing challenge for living organisms. For example, the predictive value of environmental signals needs to be updated when predicted and actual outcomes differ. Furthermore, organisms also need to gain control over the environment through actions that are expected to produce specific outcomes. The data to be presented will show that these processes are highly reliant on thalamocortical circuits wherein thalamic nuclei make a critical contribution to adaptive decision-making, challenging the view that the thalamus only acts as a relay station for the cortical stage. Over the past few years, our work has highlighted the specific contribution of multiple thalamic nuclei in the ability to update the predictive link between events or the causal link between actions and their outcomes via the combination of targeted thalamic interventions (lesion, chemogenetics, disconnections) with behavioral procedures rooted in experimental psychology. We argue that several features of thalamocortical architecture are consistent with a prominent role for thalamic nuclei in shaping mental representations.

SeminarNeuroscienceRecording

Contextual modulation of cortical processing by a higher-order thalamic input

Huizhong Tao
University of Southern Calfornia
Nov 12, 2020

Higher-order thalamic nuclei have extensive connections with various cortical areas. Yet their functionals roles remain not well understood. In our recent studies, using optogenetic and chemogenetic tools we manipulated the activity of a higher-order thalamic nucleus, the lateral posterior nucleus (LP, analogous to the primate pulvinar nucleus) and its projections and examined the effects on sensory discrimination and information processing functions in the cortex. We found an overall suppressive effect on layer 2/3 pyramidal neurons in the cortex, resulting in enhancements of sensory feature selectivities. These mechanisms are in place in contextual modulation of cortical processing, as well as in cross-modality modulation of sensory processing.

SeminarNeuroscienceRecording

Thalamic reticular nucleus dysfunction in neurodevelopmental disorders

Guoping Feng
MIT Dept. of Brain and Cognitive Sciences
May 13, 2020

The thalamic reticular nucleus (TRN), the major source of thalamic inhibition, is known to regulate thalamocortical interactions critical for sensory processing, attention and cognition. TRN dysfunction has been linked to sensory abnormality, attention deficit and sleep disturbance across multiple neurodevelopmental disorders. Currently, little is known about the organizational principles underlying its divergent functions. In this talk, I will start with an example of how dysfunction of TRN contributes to attention deficit and sleep disruption using a mouse model of Ptchd1 mutation, which in humans cause neurodevelopmental disorder with ASD. Building on these findings, we further performed an integrative single-cell analysis linking molecular and electrophysiological features of the TRN to connectivity and systems-level function. We identified two subnetworks of the TRN with segregated anatomical structure, distinct electrophysiological properties, differential connections to the functionally distinct first-order and higher-order thalamic nuclei, and differential role in regulating sleep. These studies provide a comprehensive atlas for TRN neurons at the single-cell resolution and a foundation for studying diverse functions and dysfunctions of the TRN. Finally, I will describe the newly developed minimally invasive optogenetic tool for probing circuit function and dysfunction.