← Back

Theoretical Models

Topic spotlight
TopicWorld Wide

theoretical models

Discover seminars, jobs, and research tagged with theoretical models across World Wide.
13 curated items12 Seminars1 Position
Updated 2 days ago
13 items · theoretical models
13 results
Position

N/A

Allen Institute
N/A
Dec 5, 2025

The Allen Institute is searching for a visionary leader to direct its new Center for Data-Driven Discovery, Studio D3. Studio D3 develops and applies cutting-edge theoretical models, analytical frameworks, and scalable computational methods to extract principles that govern biology from multimodal biological data. The Allen Institute has collected and openly shared some of the largest datasets in life sciences. By integrating computation, data science, and quantitative modeling into the research ecosystem, Studio D3 helps drive discovery across diverse biological disciplines.

SeminarNeuroscience

The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany

Marco Bertamini, David Brainard, Peter Dayan, Andrea van Doorn, Roland Fleming, Pascal Fries, Wilson S Geisler, Robbe Goris, Sheng He, Tadashi Isa, Tomas Knapen, Jan Koenderink, Larry Maloney, Keith May, Marcello Rosa, Jonathan Victor
Aug 20, 2025

Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.

SeminarNeuroscience

The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany

Marco Bertamini, David Brainard, Peter Dayan, Andrea van Doorn, Roland Fleming, Pascal Fries, Wilson S Geisler, Robbe Goris, Sheng He, Tadashi Isa, Tomas Knapen, Jan Koenderink, Larry Maloney, Keith May, Marcello Rosa, Jonathan Victor
Aug 18, 2025

Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.

SeminarNeuroscience

The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany

Marco Bertamini, David Brainard, Peter Dayan, Andrea van Doorn, Roland Fleming, Pascal Fries, Wilson S Geisler, Robbe Goris, Sheng He, Tadashi Isa, Tomas Knapen, Jan Koenderink, Larry Maloney, Keith May, Marcello Rosa, Jonathan Victor
Aug 12, 2025

Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.

SeminarNeuroscience

The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany

Marco Bertamini, David Brainard, Peter Dayan, Andrea van Doorn, Roland Fleming, Pascal Fries, Wilson S Geisler, Robbe Goris, Sheng He, Tadashi Isa, Tomas Knapen, Jan Koenderink, Larry Maloney, Keith May, Marcello Rosa, Jonathan Victor
Aug 11, 2025

Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.

SeminarNeuroscience

The Systems Vision Science Summer School & Symposium, August 11 – 22, 2025, Tuebingen, Germany

Marco Bertamini, David Brainard, Peter Dayan, Andrea van Doorn, Roland Fleming, Pascal Fries, Wilson S Geisler, Robbe Goris, Sheng He, Tadashi Isa, Tomas Knapen, Jan Koenderink, Larry Maloney, Keith May, Marcello Rosa, Jonathan Victor
Aug 10, 2025

Applications are invited for our third edition of Systems Vision Science (SVS) summer school since 2023, designed for everyone interested in gaining a systems level understanding of biological vision. We plan a coherent, graduate-level, syllabus on the integration of experimental data with theory and models, featuring lectures, guided exercises and discussion sessions. The summer school will end with a Systems Vision Science symposium on frontier topics on August 20-22, with additional invited and contributed presentations and posters. Call for contributions and participations to the symposium will be sent out spring of 2025. All summer school participants are invited to attend, and welcome to submit contributions to the symposium.

SeminarNeuroscienceRecording

Autopoiesis and Enaction in the Game of Life

Randall Beer
Indiana University
Mar 16, 2023

Enaction plays a central role in the broader fabric of so-called 4E (embodied, embedded, extended, enactive) cognition. Although the origin of the enactive approach is widely dated to the 1991 publication of the book "The Embodied Mind" by Varela, Thompson and Rosch, many of the central ideas trace to much earlier work. Over 40 years ago, the Chilean biologists Humberto Maturana and Francisco Varela put forward the notion of autopoiesis as a way to understand living systems and the phenomena that they generate, including cognition. Varela and others subsequently extended this framework to an enactive approach that places biological autonomy at the foundation of situated and embodied behavior and cognition. I will describe an attempt to place Maturana and Varela's original ideas on a firmer foundation by studying them within the context of a toy model universe, John Conway's Game of Life (GoL) cellular automata. This work has both pedagogical and theoretical goals. Simple concrete models provide an excellent vehicle for introducing some of the core concepts of autopoiesis and enaction and explaining how these concepts fit together into a broader whole. In addition, a careful analysis of such toy models can hone our intuitions about these concepts, probe their strengths and weaknesses, and move the entire enterprise in the direction of a more mathematically rigorous theory. In particular, I will identify the primitive processes that can occur in GoL, show how these can be linked together into mutually-supporting networks that underlie persistent bounded entities, map the responses of such entities to environmental perturbations, and investigate the paths of mutual perturbation that these entities and their environments can undergo.

SeminarNeuroscienceRecording

Neural correlates of temporal processing in humans

Andre M. Cravo
Center for Mathematics, Computing and Cognition, Federal University of ABC
Jan 25, 2022

Estimating intervals is essential for adaptive behavior and decision-making. Although several theoretical models have been proposed to explain how the brain keeps track of time, there is still no evidence toward a single one. It is often hard to compare different models due to their overlap in behavioral predictions. For this reason, several studies have looked for neural signatures of temporal processing using methods such as electrophysiological recordings (EEG). However, for this strategy to work, it is essential to have consistent EEG markers of temporal processing. In this talk, I'll present results from several studies investigating how temporal information is encoded in the EEG signal. Specifically, across different experiments, we have investigated whether different neural signatures of temporal processing (such as the CNV, the LPC, and early ERPs): 1. Depend on the task to be executed (whether or not it is a temporal task or different types of temporal tasks); 2. Are encoding the physical duration of an interval or how much longer/shorter an interval is relative to a reference. Lastly, I will discuss how these results are consistent with recent proposals that approximate temporal processing with decisional models.

SeminarPhysics of LifeRecording

Mechano-adaptation in a large protein complex

Navish Wadhwa
Harvard
Nov 21, 2021

Macromolecular protein complexes perform essential biological functions across life forms. A fundamental, though yet unsolved question in biology is how the function of such complexes is regulated by intracellular or extracellular signals. For instance, we have little understanding of how forces affect multi-protein machines whose function is often mechanical in nature. We address this question by studying the bacterial flagellar motor, a large complex that powers swimming motility in many bacteria. This rotary motor autonomously adapts to changes in mechanical load by adding or removing force-generating ‘stator’ units that power rotation. In the bacterium Escherichia coli, up to 11 units drive the motor at high load while all the units are released at low load. We manipulate motor load using electrorotation, a technique in which a rapidly rotating electric field applies an external torque on the motor. This allows us to change motor load at will and measure the resulting stator dynamics at single-unit resolution. We found that the force generated by the stator units controls their unbinding, forming a feedback loop that leads to autoregulation of the assembly. We complemented our experiments with theoretical models that provide insight into the underlying molecular interactions. Torque-dependent remodeling takes place within seconds, making it a highly responsive control mechanism, one that is mediated by the mechano-chemical tuning of protein interactions.

SeminarPsychology

Age-related dedifferentiation across representational levels and their relation to memory performance

Malte Kobelt
Ruhr-University Bochum
Oct 6, 2021

Episodic memory performance decreases with advancing age. According to theoretical models, such memory decline might be a consequence of age-related reductions in the ability to form distinct neural representations of our past. In this talk, I want to present our new age-comparative fMRI study investigating age-related neural dedifferentiation across different representational levels. By combining univariate analyses and searchlight pattern similarity analyses, we found that older adults show reduced category selective processing in higher visual areas, less specific item representations in occipital regions and less stable item representations. Dedifferentiation on all these representational levels was related to memory performance, with item specificity being the strongest contributor. Overall, our results emphasize that age-related dedifferentiation can be observed across the entire cortical hierarchy which may selectively impair memory performance depending on the memory task.

SeminarNeuroscience

Towards better interoceptive biomarkers in computational psychiatry

Micah Allen
Aarhus University & Cambridge Psychiatry
Feb 14, 2021

Empirical evidence and theoretical models both increasingly emphasize the importance of interoceptive processing in mental health. Indeed, many mood and psychiatric disorders involve disturbed feelings and/or beliefs about the visceral body. However, current methods to measure interoceptive ability are limited in a number of ways, restricting the utility and interpretation of interoceptive biomarkers in psychiatry. I will present some newly developed measures and models which aim to improve our understanding of disordered brain-body interaction in psychiatric illnesses.

SeminarNeuroscience

Emergent scientists discuss Alzheimer's disease

Christiana Bjørkli, Siddharth Ramanan
Norwegian University of Science and Technology, University of Cambridge
Oct 19, 2020

This seminar is part of our “Emergent Scientists” series, an initiative that provides a platform for scientists at the critical PhD/postdoc transition period to share their work with a broad audience and network. Summary: These talks cover Alzheimer’s disease (AD) research in both mice and humans. Christiana will discuss in particular the translational aspects of applying mouse work to humans and the importance of timing in disease pathology and intervention (e.g. timing between AD biomarkers vs. symptom onset, timing of therapy, etc.). Siddharth will discuss a rare variant of Alzheimer’s disease called “Logopenic Progressive Aphasia”, which presents with temporo-parietal atrophy yet relative sparing of hippocampal circuitry. Siddharth will discuss how, despite the unusual anatomical basis underlying this AD variant, degeneration of the angular gyrus in the left inferior parietal lobule contributes to memory deficits similar to those of typical amnesic Alzheimer’s disease. Christiana’s abstract: Alzheimer’s disease (AD) is a debilitating neurodegenerative disorder that causes severe deterioration of memory, cognition, behavior, and the ability to perform daily activities. The disease is characterized by the accumulation of two proteins in fibrillar form; Amyloid-β forms fibrils that accumulate as extracellular plaques while tau fibrils form intracellular tangles. Here we aim to translate findings from a commonly used AD mouse model to AD patients. Here we initiate and chronically inhibit neuropathology in lateral entorhinal cortex (LEC) layer two neurons in an AD mouse model. This is achieved by over-expressing P301L tau virally and chronically activating hM4Di DREADDs intracranially using the ligand dechloroclozapine. Biomarkers in cerebrospinal fluid (CSF) is measured longitudinally in the model using microdialysis, and we use this same system to intracranially administer drugs aimed at halting AD-related neuropathology. The models are additionally tested in a novel contextual memory task. Preliminary findings indicate that viral injections of P301L tau into LEC layer two reveal direct projections between this region and the outer molecular layer of dentate gyrus and the rest of hippocampus. Additionally, phosphorylated tau co-localize with ‘starter cells’ and appear to spread from the injection site. Preliminary microdialysis results suggest that the concentrations of CSF amyloid-β and tau proteins mirror changes observed along the disease cascade in patients. The disease-modifying drugs appear to halt neuropathological development in this preclincial model. These findings will lead to a novel platform for translational AD research, linking the extensive research done in rodents to clinical applications. Siddharth’s abstract: A distributed brain network supports our ability to remember past events. The parietal cortex is a critical member of this network, yet, its exact contributions to episodic remembering remain unclear. Neurodegenerative syndromes affecting the posterior neocortex offer a unique opportunity to understand the importance and role of parietal regions to episodic memory. In this talk, I introduce and explore the rare neurodegenerative syndrome of Logopenic Progressive Aphasia (LPA), an aphasic variant of Alzheimer’s disease presenting with early, left-lateralized temporo-parietal atrophy, amidst relatively spared hippocampal integrity. I then discuss two key studies from my recent Ph.D. work showcasing pervasive episodic and autobiographical memory dysfunction in LPA, to a level comparable to typical, amnesic Alzheimer’s disease. Using multimodal neuroimaging, I demonstrate how degeneration of the angular gyrus in the left inferior parietal lobule, and its structural connections to the hippocampus, contribute to amnesic profiles in this syndrome. I finally evaluate these findings in the context of memory profiles in other posterior cortical neurodegenerative syndromes as well as recent theoretical models underscoring the importance of the parietal cortex in the integration and representation of episodic contextual information.

SeminarNeuroscience

Neural and computational principles of the processing of dynamic faces and bodies

Martin Giese
University of Tübingen
Jul 7, 2020

Body motion is a fundamental signal of social communication. This includes facial as well as full-body movements. Combining advanced methods from computer animation with motion capture in humans and monkeys, we synthesized highly-realistic monkey avatar models. Our face avatar is perceived by monkeys as almost equivalent to a real animal, and does not induce an ‘uncanny valley effect’, unlike all other previously used avatar models in studies with monkeys. Applying machine-learning methods for the control of motion style, we were able to investigate how species-specific shape and dynamic cues influence the perception of human and monkey facial expressions. Human observers showed very fast learning of monkey expressions, and a perceptual encoding of expression dynamics that was largely independent of facial shape. This result is in line with the fact that facial shape evolved faster than the neuromuscular control in primate phylogenesis. At the same time, it challenges popular neural network models of the recognition of dynamic faces that assume a joint encoding of facial shape and dynamics. We propose an alternative physiologically-inspired neural model that realizes such an orthogonal encoding of facial shape and expression from video sequences. As second example, we investigated the perception of social interactions from abstract stimuli, similar to the ones by Heider & Simmel (1944), and also from more realistic stimuli. We developed and validated a new generative model for the synthesis of such social interaction, which is based on a modification of human navigation model. We demonstrate that the recognition of such stimuli, including the perception of agency, can be accounted for by a relatively elementary physiologically-inspired hierarchical neural recognition model, that does not require the assumption of sophisticated inference mechanisms, as postulated by some cognitive theories of social recognition. Summarizing, this suggests that essential phenomena in social cognition might be accounted for by a small set of simple neural principles that can be easily implemented by cortical circuits. The developed technologies for stimulus control form the basis of electrophysiological studies that can verify specific neural circuits, as the ones proposed by our theoretical models.